Büyük Patlama Evreni Nasıl oluşturdu?

Artık evrenin genişlediğini bildiğimizden dolayı, kaçınılmaz bir çıkarım da gözlerimizin önüne dek gelmiş oldu: O halde evrenin boyutları geçmişte daha küçüktü. Genişleme süreci, tıpkı geriye sarılan bir film gibi geçmişe doğru takip edildiğinde, astronomlar bundan 13,7 milyar yıl önce tüm evrenin düşünülebilen en küçük taneciğin içine sıkışmış olduğu sonucuna ulaştılar. Birbirlerinden uzaklaşan galaksilere bakarak, her ne kadar yaşlı olsa da, evrenin ezelden beri var olmadığı gerçeğini anladık. Zamanın bir başlangıcı vardı. Yalnızca 1 3,7 milyar yıl önce, tüm madde, enerji, uzay ve zaman, dev bir patlamayla, yani Büyük Patlama’yla oluşmuştu.

Kozmik genişlemenin şaşırtıcı ölçüde basit bir kanuna riayet ettiği anlaşıldı. Her bir galaksi, mesafesiyle doğru orantılı bir hızda Samanyolu’ndan uzaklaşıyordu. Yani Samanyolu’na iki kat daha uzak olan bir galaksi iki kat daha hızlı uzaklaşmaktaydı ya da 10 kat uzaktaki bir galaksi 10 kat hızlı. Hubble yasası olarak bilinen bu bağıntının, boyutları genişleyen ve hangi galaksiden bakarsanız bakın aynı görünen tüm evrenler için kaçınılmaz bir şekilde geçerli olduğu ortaya çıktı.

İçinde kuru üzüm taneleri olan bir kek düşünün. Eğer küçülerek bu üzüm tanelerinden herhangi birinin üzerine kurulabilecek olsaydınız, manzaranız diğer herhangi bir tanecikten görünecek manzarayla aynı olurdu. Dahası, kek bir fırına konarak kabartılsaydı, yalnızca diğer taneciklerin sizden uzaklaştığını görmekle kalmaz, aynı zamanda size olan mesafeleriyle doğru orantılı hızlarla uzaklaştıklarını da fark edebilirdiniz. Hangi üzüm taneciğinin üzerinde olduğunuzun da hiçbir önemi olmazdı; seyredeceğiniz manzara her zaman ve her noktadan aynı olurdu (buradaki tek şart, her zaman kenardan uzakta olmanız için, kekin büyük bir kek olmasıdır). Genişleyen bir evrendeki galaksiler de, kabarmakta olan bir kekin içine dağılmış üzüm tanelerine benzetilebilir.

Ancak tüm galaksilerin bizden uzaklaştığinı gördüğümüzden dolayı, evrenin merkezinde bulunduğumuza ve Büyük Patlama’nın da kozmik arka bahçemizde gerçekleştiğine dair bir varsayımda bulunamayız. Samanyolu değil de bir başka galakside olsaydık da, göreceğimiz manzara değişmezdi; diğer tüm galaksiler yine bizden uzaklaşıyor olurdu. Büyük Patlama burada, şurada ya da evrenin herhangi bir noktasında olmamıştır. Aynı ayda her yerde olmuştur. 16. yüzyıl filozofu Giordano Bruno’nun dediği gibi: “Evrende, merkez ya da çevre olarak adlandırılabilecek bir yer yoktur, çünkü her yer merkezdir.”

Aslına bakılacak olursa, Büyük Patlama terimi gerçekleşen olayı tanımlamada bir parça yanlış kaçıyor. Çünkü aşina olduğumuz hiçbir türden patlamayı andırır bir tarafı yok. Mesela bir dinamit infilak ettiğinde, patlama sabit bir noktadan çıkar ve etkisi, halihazırda var olan bir uzayda genişleyerek ilerler. Büyük Patlama ise tek bir noktada olmamıştır ve patlamadan önce var olan bir uzay yoktur! Her şey -uzay, zaman, enerji ve madde- Büyük Patlama’yla oluşmuş ve aynı anda her yönde genişlemeye başlamıştır.

Genel Göreliliğin Sonuçları

Zamanın genleşmesi, Einstein’ın genel görelilik teorisinin çığır açıcı öngörülerinden yalnızca birisidir. Bir diğeri ise az önce değindiğimiz, kütleçekimsel dalgaların mevcudiyetidir. Bu dalgaların var olduğunu biliyoruz, çünkü astronomlar, en azından biri nötron yıldızı olan bir yıldız çiftini gözlemlediklerinde, bu yıldızların birbirlerine doğru sarmal oluştururlarken enerji kaybettiklerini fark etmiştir. Bu enerji kaybı ancak kütleçekimsel dalgalar tarafından taşınıyor oldukları takdirde açıklanabilir.

Günümüzde, kütleçekimsel dalgaların doğrudan tespit edilebilmesi üzerinde çalışılıyor. Bu dalgaların, uzayı dönüşümlü olarak gerip sıkıştırmaları gerektiği düşünüldüğünden, dalgaları tespit etmek için kurulan deney düzeneklerinde birkaç kilometre uzunluğunda dev “cetveller” kullanılıyor. Cetveller ışıktan yapılıyor olsa da, bu düzeneğin ardındaki fikir oldukça basit – kütleçekimsel dalgalar bizi geçerken, cetvellerin uzunluklarında oluşan değişiklikleri tespit etmek.

Einstein’ın teorisinin, şu ana dek üzerinde yorum yapmadan geçtiğimiz bir diğer öngörüsü de, ışığın kütleçekimi tarafından eğilmesidir. Bu eğilmenin nedeni, ışığın dört boyutlu uzay-zamanın bükülmüş coğrafyasını takip etmek durumunda olmasıdır. Her ne kadar Newton’un kütleçekim kanunu bu türden bir etkinin mevcudiyetini ortaya koymasa da, bu kanun -ışık da dahil olmak üzere tüm enerji türlerinin etkin kütleye sahip olduğuna yönelik özel görelilik fikriyle birleştirildiğinde, bunun böyle olması gerektiği ortaya çıkıyor. Işık, güneş gibi büyük kütleli bir cismi geçerken, yıldızın kütleçekiminin etkisine maruz kalarak rotasından hafif bir şekilde sapar.

Devamını oku “Genel Göreliliğin Sonuçları”

Genel Görelilik nedir?

Einstein’ın kütleçekimini nasıl yeniden ele aldığı artık açıklığa kavuşmuş olmalı. Kütleler, örneğin güneş gibi yıldızlar, etraflarındaki uzay-zamanı büker. Bu durumda, diğer kütleler, örneğin dünya gibi gezegenler, kendi eylemsizlikleri altında ve bükülmüş uzay-zaman içerisinde serbest bir şekilde hareket eder. İzledikleri rotalar eğiktir, çünkü bunlar bükülmüş bir uzay içinde olası en kısa rotalardır. Bu kadar. Genel görelilik teorisi budur.

Ancak şeytan ayrıntılarda gizli. Gezegen gibi kütleli bir cismin bükülmüş uzay içerisinde nasıl hareket ettiğini biliyoruz. Mümkün olan en kısa rotayı izliyor. Peki ama, güneş gibi bir kütle, etrafındaki uzay-zamanı tam olarak nasıl büküyor? Einstein’ın bu soruyu cevaplaması 10 yıldan daha uzun bir zaman aldı; konunun detayları ise telefon rehberi büyüklüğündeki bir kitabı doldurabilirdi. Yine de Einstein’ın genel görelilik teorisini oluştururken yola çıktığı noktayı anlamak o kadar da güç değil. Aslında bu nokta, eşdeğerlik ilkesi.

Yeniden camları karartılmış mekik içindeki çekiç ve tüye dönelim. Astronot için bu iki cisim kütleçekiminin kuvvetiyle zemine düşüyorlarmış gibi görünecektir. Ancak deneyi mekiğin dışından takip eden birisi, çekiçle tüyün yalnızca havada asılı olduklarını ve kabin zemininin bu cisimlerle karşılaşmak için yukarı doğru ivmelendiğini görecektir. Cisimler tamamen ağırlıksızdır.

Bu gözlem temel bir öneme sahip. Serbest düşüş içerisinde olan bir cisim kütleçekimi hissetmez. Bir asansörün içinde olduğunuzu ve kabloların koptuğunu düşünelim. Asansör düşerken, ağırlığınız olmaz. Kütleçekimini hissetmezsiniz.

Devamını oku “Genel Görelilik nedir?”

Kütleçekimi Eğik Uzaydır

Düz bir çizgi iki nokta arasındaki en kısa yoldur. Bir kağıdın üzerinde bu durum kesinlikle doğru. Peki ama, eğri bir yüzey üzerinde? Diyelim ki, dünyanın yüzeyi üzerinde? Londra ve New York arasındaki en kısa rotayı seçen bir uçak düşünün. Uçak nasıl bir rota izleyecektir? Uzaydan bakan bir gözlemci için bu rotanın eğik olacağı açık bir şekilde ortadadır. Ya da engebeli bir arazi üzerinde ilerleyen bir dağcıyı düşünelim. Onun rotası nasıl olur? Bu dağcıyı, arazi engebelerinin ayırt edilemeyeceği kadar yüksek bir noktadan seyreden gözlemci için, dağcı oldukça dolambaçlı bir şekilde ileri-geri hareket edip duracaktır.

O halde, sanılanın aksine, iki nokta arasındaki en kısa mesafenin her zaman düz bir çizgi olması gerekmiyor. Aslına bakacak olursanız, düz bir çizgi ancak özel bir tür yüzey üzerinde var olabilir – düz bir yüzey üzerinde. Dünyanınki gibi eğri bir yüzey üzerinde, iki nokta arasındaki en kısa mesafe her zaman eğri olmak durumundadır. Bu gerçeğin fark edilmesiyle matematikçiler, düz çizgi kavramını eğik yüzeyleri de dahil edecek şekilde yeniden tanımladı. Yalnızca düz değil, her türlü yüzey üzerinde iki nokta arasındaki en kısa rotaya jeodezik adı verildi.

Bütün bunların kütleçekimiyle ne bağlantısı var? Bağlantı, ışık. İki nokta arasındaki en kısa mesafeyi almak, ışığın karakteristik bir özelliği. Mesela tam şu anda, okuduğunuz bu kelimelerden gözlerinize gelen ışık da en kısa rotayı izliyor.

Devamını oku “Kütleçekimi Eğik Uzaydır”

Kütle çekim nedir?

Bir gün fikir ansızın aklıma düştü. Bern ‘de bulunan patent ofisindeki odamda otururken, düşünce birdenbire gelişmişti: Bir adam serbest bir şekilde düşerken kendi ağırlığını hissetmez. Afallayıp kalmıştım. Bu basit düşünce üzerimde ciddi bir etki yarattı. Ve bu da beni kütleçekim teorisine götürdü.

Albert Einstein

Onlar, 20 yaşında ikiz kız kardeşler. İkisi de Manhattan ‘da aynı gökdelende çalışıyor. Biri, zemin kattaki bir butikte asistan, diğeri ise 52. kattaki bir restoranda garson.

Saat sabahın 8:30’u. Döner kapıdan geçerek hole giriyor ve iş yerlerine gitmek için ayrılıyorlar. Biri alışveriş mağazasına giden mermer yolu adımlarken, diğeri kapılar kapanmadan yüksek-hızlı asansöre yetişmek için koşturuyor.

Asansörün tepesindeki saatin kolları bütün gün boyunca dönüyor ve saat akşamın 5:30’u oluyor. Zemin kattaki butik asistanı kız kardeş, inmekte olan asansörün paneline bakıyor. En sonunda kapılar açılıyor ve garson olarak çalışan kız kardeşi dışarı çıkıyor … Gümüş rengi bir yürütece tutunmuş, 85 yaşında çarpık bir figür olarak!

Bu hikayenin yalnızca uçuk bir kurgu olduğunu sanıyorsanız, bir daha düşünün. Tamam, belki biraz abartma payı var, fakat abartılan şey bir gerçek. Durum şu ki, bir binanın zemin katında, en tepesine nazaran, daha yavaş yaşlanırsınız. Bu durum Einstein’ın, kendi özel görelilik teorisinin noksanlarını kapatmak için geliştirdiği genel görelilik teorisinin bir etkisidir.

Özel görelilik teorisinin sorunu, özel olmasıydı. Teori temel olarak, bir kişinin, kendisine göre sabit hızda yol alan bir başka kişiye baktığında ne gördüğü üzerinedir: Teoriye göre, hareket halindeki kişi hareket ettiği yönde büzülürken, zaman algısı yavaşlar; bu etki ışık hızına yaklaşıldıkça çok daha belirginleşir. Ancak sabit hızda hareket çok özel bir durumdur. Çünkü genel olarak cisimler, zamanla hızlarını değiştirir. Örneğin trafik ışığını geride bırakan bir otomobil hızını arttırırken, bir uzay mekiği atmosfere girdiğinde yavaşlar.

Bu bağlamda, 1905 yılında kendi özel görelilik teorisini yayımladığında Einstein’ın cevaplamak istediği soru şuydu: Bir kişi, kendisine göre hızlanan bir kişiye baktığında ne görür? Einstein’ın bulmak için on yıldan fazla zaman harcadığı cevap ise tek bir insan tarafından bilim tarihine yapılmış en büyük katkı olarak kabul edilebilecek “genel” görelilik teorisidir.

Einstein araştırmalarına başladığında, özellikle bir sorun kafasını meşgul ediyordu: Newton’un kütleçekim kanunuyla ne yapacağı. Newton’un kütleçekim kanunu neredeyse 250 yıl boyunca tartışılmadan kabul edilmiş olsa da, Einstein bu kanunun özel görelilik teorisiyle temel anlamda uyumsuzluk içinde olduğunun farkındaydı. Newton’a göre, her kütleli cisim, bir diğer kütleli cisme kütleçekimi denilen r kuvvetle çekilmektedir. Örneğin dünya ile her birimiz arasında bir kütleçekimi mevcuttur; ayaklarımızın zemine basmasını sağlayan da budur. Güneş ve dünya arasında da kütleçekimi vardır; dünyayı güneşin etrafındaki yörüngesinde tutan bu çekim kuvvetidir. Einstein’ın karşı çıktığı noktalar bunlar değildi elbette. Asıl sıkıntı kütleçekiminin hızındaydı.

Newton, kütleçekim kuvvetinin anında etki gösterdiğini düşünüyordu. Bunun anlamı, dünyanın güneşin kütleçekimini herhangi bir gecikme olmaksızın hissettiğiydi. Bu bağlamda, güneş tam şu anda yok olacak olsa, dünyanın da, güneşin kütleçekim yokluğunu aynı anda hissetmesi ve yörüngesini kaybederek uzayın derinliklerine doğru kaymaya başlaması gerekiyordu.

Güneş ve dünya arasındaki mesafeyi hiç zaman kaybetmeksizin katedecek bir etkinin, yani güneşin kütleçekiminin, sonsuz hızda yol alması gerekir. Anında bir başka yerde olmak ve sonsuz hız eşdeğer şeylerdir. Fakat Einstein, kütleçekimi de dahil olmak üzere, hiçbir şeyin ışıktan daha hızlı hareket edemeyeceğini keşfetmişti. Işığın, güneş ve dünya arasındaki mesafeyi alması 8 dakika sürdüğünden, eğer ki güneş birdenbire yok olacak olsaydı, dünyanın yörüngesinden çıkıp diğer yıldızlara kaymasından önce en azından 8 dakikadan biraz daha uzun bir süre geçmesi gerekirdi.

Öte yandan Newton’un, kütleçekiminin uzay boşluğunu sonsuz bir hızla katettiğine yönelik üstü kapalı çıkanını, kütleçekim kanunundaki tek ciddi hata değildi. Newton aynı zamanda kütleçekim kuvvetinin kaynağının kütlenin kendisi olduğunu düşünüyordu. Einstein ise tüm enerji türlerinin etkin bir kütlesi (ya da ağırlığı) olduğunu ortaya koydu. Dolayısıyla da, yalnızca kütle enerjisi değil, tüm enerji türlerinin bir kütleçekim kaynağı olması gerekiyordu.

Einstein’ın karşı karşıya kaldığı güç durum, özel görelilik teorisindeki fikirleri yeni bir kütleçekim teorisine dahil etmek ve dünyanın hızlanmakta olan bir insana nasıl görüneceğini tanımlamak için özel görelilik teorisini genellemekti. Bu devasa sorunlarla boğuşurken Einstein’ın kafasında bir ışık parladı. Kendisini hem şaşırtan hem de keyiflendiren bir şekilde bu iki işin aslında tek ve aynı şey olduğunu fark etmişti.