Uzay-Zaman nedir?

Zamanın yavaşlaması ve uzayın büzülmesi, hareket durumları ne olursa olsun evrendeki herkesin ışık hızını aynı ölçmesi için ödenen bedeldir. Ancak bu yalnızca başlangıç.

Diyelim ki, iki yıldız ve bu iki yıldızın arasındaki boşlukta -tam orta noktada- asılı duran bir astronot var. Astronotun, iki yıldızın aynı anda patlamasına tanık olduğunu düşünelim. Yani her iki tarafında da kör edici bir ışık çakması olduğunu. Şimdi de iki yıldızı birbirine bağlayan hat üzerinde muazzam bir hızla ilerleyen bir uzay mekiği olduğunu ve mekiğin, astronotun yanından, yıldızların patladığını gördüğü anda geçtiğini düşünelim. Peki bu durumda uzay mekiğinin pilotu ne görür?

Mekik bir yıldıza doğru ilerlerken diğer yıldızdan uzaklaşacağından ötürü, yaklaşmakta olduğu yıldızdan gelen ışık, uzaklaşmakta olduğu yıldızdan gelen ışıktan daha önce kendisine ulaşır. Dolayısıyla da, iki patlama aynı anda gerçekleşmemiş gibi görünür. Bu bağlamda, eşzamanlılık kavramı da ışık hızının değişmezliğinin gazabına uğramaktadır. Bir gözlemci için eşzamanlı olan bir olay, hareket halindeki bir başka gözlemci için eşzamanlı değildir.

Devamını oku “Uzay-Zaman nedir?”

Göreliliğin Anlamı

Ancak pratik anlamda görelilik ne demek oluyor? Diyelim ki dünyaya en yakın yıldıza ışık hızının yüzde 99,5’i gibi bir hızla gidip gelmenizin mümkün olduğu bir zamanda yaşıyorsunuz. Dünyaya en yakın yıldız olan Alfa Centauri’ye uzaklığımızın 4,3 ışık yılı olduğunu düşünecek olursak, gidip ortalığa bir göz attıktan sonra geri dönmeniz, dünyadaki birine göre 9 yıl sürecektir. Ancak sizin bakış açınızdan, Alfa Centauri’ye olan mesafe görelilik yüzünden 10 kat büzülecektir. Dolayısıyla yapacağınız ring sefer sizin için 11 ay kadar sürer. Yolculuğa çıktığınızda 21 yaşınızda olduğunuzu ve uzay üssünde sizi uğurlarken bıraktığınız bir de ikiz kardeşiniz olduğunu varsayalım. Bu durumda, Alfa Centauri’den geri döndüğünüzde, siz ancak 22 yaşına ulaşmışken, ikiziniz 30’una basmış olur!

Peki, siz henüz 22’ye basarken 30’una gelmiş ikiziniz bu durumdan nasıl bir anlam çıkarabilir? Seyahatiniz boyunca ağır çekimde yaşadığınızı düşünebilir. Ve gerçekten de uzay mekiğinizin içini gözlemlemesi bir şekilde mümkün olsaydı, sizi bir ağdanın içinde hareket etmeye çalışıyormuş gibi ve mekiğin tüm saatlerini de normalden 10 kat daha yavaş işlerken görebilirdi. Ve bu durumda ikiziniz, yerinde bir akıl yürütmeyle, tüm bu gördüklerini görelilik münasabetiyle zamanın genişlemesine atfedebilirdi. Ancak sizin için, mekiğinizdeki saatler ve panelinizi kaplayan göstergeler gayet normal görünürdü. İşte göreliliğin sihri burada.

Elbette ki, Alfa Centauri’ye ne denli hızlı yol alırsanız, siz ve ikizinizin yaşları arasındaki fark da aynı ölçüde artacaktır. Evrende yeterince hızlı ve yeterince uzağa gittiğiniz takdirde, geri döndüğünüz zaman siz halen genç bir insanken, ikiziniz çoktan gömülmüş olur. Daha da hızlandığınızda, ayrıldığınız dünya da hiçliğe karışmış olabilir. Hatta ışık hızına çıktığınızı düşünecek olursak, zaman sizin için öylesine yavaşlar ki, evrenin geleceğinde tüm olan bitenler sizi ileri sarılmış bir film gibi yalayıp geçer. Rus fizikçi Igor Novikov’un dediği gibi: “Geleceği ziyaret etme olasılığı, bu fikri ilk kez duyan herkese muhteşem gelir.”

Devamını oku “Göreliliğin Anlamı”

Büzülen Uzay, Esnek Zaman

Uzay ve zaman konusuna neden geldik? Işık dahil olmak üzere her şeyin hızı, belirli bir zaman diliminde katedilen mesafedir. Mesafeler genelde cetvelle, zaman ise saatle ölçülür. Dolayısıyla, “Nasıl oluyor da herkes, hareket durumları ne olursa olsun, aynı ışık hızını ölçebiliyor?” Sorusunu bir başka şekilde ortaya koyabiliriz: İnsanların, belli bir zamanda katettiği mesafeyi ölçtüklerinde, ışığın hızını her zaman tam olarak saniyede 300.000 kilometre bulmaları için, cetvel ve saatlere ne olması gerekiyor?

Evrendeki herkesin ışığın hızı üzerinde hemfikir olabilmesi için, uzay ve zamana ne olması gerektiğine dair bir denklemden bahsediyoruz. İşte, özel görelilik kısaca budur.

Uzayda zaman kuramı!

Üzerine doğru ışık hızının 0,75 katı hızla gelen bir uzay çöpüne lazerle ateş açan bir uzay gemisi düşünelim. Lazer ışını uzay çöpüne ışık hızının 1 ,75 katı hızla çarpamaz, çünkü bu imkansızdır; tam olarak ışık hızında çarpması gerekir. Bunun gerçekleşebilmesinin tek yolu, olayları gözlemleyen ve yaklaşmakta olan ışığın belli bir zamanda katettiği mesafeyi tahmin eden birisinin, mesafeyi olduğundan az ya da zamanı olduğundan fazla saptamasıdır.

Aslında Einstein her ikisinin de olduğunu keşfetmiştir. Uzay gemisini dışarıdan gözlemleyen birisi için, hareket halindeki cetveller büzülür ve hareket halindeki saatler yavaşlar. Yani uzay “büzülür” ve zaman “genişler.” Dahası bunu tam olarak, ışık hızının evrendeki herkes tarafından saniyede 300.000 kilometre olarak ölçüleceği şekilde yaparlar. Bu durum dev bir kozmik komployu andırmıyor mu? Evrenimizdeki sabit olan unsur, uzay ya da zamanın akışı değil, ışığın hızıdır. Ve evrendeki her şeyin, kendisini ışığın egemen durumuna göre ayarlamak dışında hiçbir şansı yoktur.

Devamını oku “Büzülen Uzay, Esnek Zaman”

Uzay Denizindeki Dalgalanmalar

19. yüzyıl başlarında , Rosetta Taşı’nı Fransız Jean François Champollion’dan bağımsız olarak deşifre etmesiyle ün salmış olan İngiliz fizikçi Thomas Young, ışık geçirmez bir perdede birbirine çok yakın iki dikey yarık oluşturarak perdeyi tek renkli bir ışıkla aydınlattı. Şayet ışık bir dalgaysa , her yarığın yeni bir dalga kaynağı gibi davranacağını ve bu ayrı kaynaklardan çıkan iki ışığın perdenin uzak tarafına , küçük bir gölde oluşan iç içe geçmiş dalgalara benzer şekilde yayıla cağını düşündü.

Girişim [interference] dalgaların sergilediği karakteristik bir özelliktir. İki benzer dalga birbirinin içinden geçerken, dalga tepelerinin birbirine denk düştüğü noktalarda kuvvetlenir, birinin dalga tepesi diğerinin dalga çukuruna rastladığında ise birbirlerini sönümlendirirler.

Sağanak yağmur yağarken bir su birikintisine bakarsanız, her bir yağmur damlacığının oluşturduğu dalgalanmaların yayılarak birbirleriyle “yapıcı” ve “yıkıcı” şekilde girişim de bulunduğunu görürsünüz.

Young, açtığı iki yarıktan çıkan ışığın önüne ikinci bir beyaz perde koydu. Ve bunu yaptığı anda, süpermarket barkodlarındaki gibi, ardı sıra dizilmiş karanlık ve aydınlık şeritler gözlemledi. Bu girişim deseni, ışığın dalga olduğunu gösteren inkar edilemez bir kanıttı. İki yarıktan çıkan ışığın dalga tepeleri birbirine ayak uydurduğunda ışığın parlaklığı artıyor; uyduramadıklarında ise ışık sönümleniyordu.

Young “çift yarık” düzeneğini kullanarak ışığın dalga boyunu hesaplamayı başardı. Bu dalga boyu, milimetrenin yalnızca binde birine tekabül eden (insan saçından bile daha ince) bir değerdi. Bu değer, daha önce ışığın dalga olabileceğinin neden tahmin edilemediğini açıklıyordu.

Gelecek iki yüzyıl boyunca, Young’ın ışığın uzay denizindeki dalgalanmalar olduğu görüşü, tüm ışık olaylarını açıklamada geçerli oldu. Fakat 19. yüzyılın sonlarına doğru, bu konuda sorunlar yaşanmaya başladı. Her ne kadar ilk zamanlarda çok az kişi farkına varmış olsa da, ışığın dalga olduğu görüşüyle, atomun maddenin en küçük yapı taşı olduğu fikri uzlaşmıyordu.

Sorun, ışıkla maddenin bir araya geldiği kesişim noktasındaydı.

Büyük Patlama Teorisinin Geçmişi ve Sorunları

Uzay Evren

“Büyük patlama teorisinden” tek başına bahsetmek aslında doğru değildir. Gerçekte, her biri başı dertten kurtulmayan en azından beş farklı teori vardır. Birincisi, görmüş olduğumuz gibi, 1927’de Lemaître tarafından ileri sürüldü. Bu teori, kısa sürede bir dizi farklı temelde çürütüldü: genel görelilik ve termodinamikten türetilen hatalı sonuçlar, kozmik ışınlar ve yıldızların evrimi hakkında yanlış teoriler vb. İtibarını kaybeden teori, İkinci Dünya Savaşından sonra yeni bir biçim altında George Gamow ve diğerleri tarafından yeniden canlandırıldı. Büyük patlamadan kaynaklanmış olabilecek çeşitli olguları –maddenin yoğunluğu, sıcaklık, radyasyon düzeyleri vb.– açıklamak için Gamow ve diğerleri tarafından birtakım (yeri gelmişken, bir parça bilimsel “yaratıcı muhasebecilikten” yoksun olmayan) hesaplar yapıldı. George Gamow’un parlak yazım tarzı, büyük patlamanın, popüler hayal gücünü ele geçirmesini sağladı. Teori bir kez daha, beklenmedik biçimde ciddi sorunlarla yüz yüze geldi. Sadece Gamow’un modelini değil, onun ardından gelen Robert Dicke ve diğerlerinin “salınan evren” modelini de geçersiz kılan birçok tutarsızlıklar bulunmuştu. Robert Dicke’in “salınan evren” modeli, evreni sonu olmayan bir döngüde salındırarak, büyük patlamadan önce ne olduğu sorununu halletmeye dönük bir girişimdi. Ancak Gamow önemli bir öngörüde bulunmuştu; böyle muazzam bir patlama, geride büyük patlamanın uzaydaki bir çeşit yankısı olarak “fon ışıması” şeklinde bir iz bırakmalıydı. Bu kehanet, birkaç yıl sonra teoriyi yeniden canlandırmak için kullanıldı.
Devamını oku “Büyük Patlama Teorisinin Geçmişi ve Sorunları”

Görelilik ve Kara Delikler

karadelikNewton’dan farklı olarak Einstein’a göre, kütleçekim zamanı etkiler, çünkü ışığı etkiler. Eğer bir kara deliğin kenarında hareketsiz tutulan bir ışık parçacığı hayal edilirse, bu parçacık ne ilerler ne de geriler, ne enerji kaybeder ne de kazanır, yalnızca belirsiz bir şekilde askıda kalır. Böyle bir durumda, “zamanın kıpırdamadan durduğunu” ileri sürmek mümkündür. Kara delikleri ve onun niteliklerini savunan görelilikçilerin iddiası budur. Sözün kısası, kastedilen, eğer tüm hareket sona erdirilseydi, ne durum ne de konumda herhangi bir değişimin olmayacağı ve bu nedenle de kelimenin herhangi bir anlamında zaman diye bir şeyin bulunmayacağıdır. Kara deliğin kenarında varolduğu farz edilen durum budur. Ne var ki bu, son derece spekülatif ve mistik bir yorum olarak görünmektedir.

Tüm maddeler sürekli bir değişim ve hareket halindedirler ve bu nedenle burada söylenen şey, eğer madde ve hareket yok edilirse, zamanın da yok olacağından başka bir şey değildir, ki bu tam bir totolojidir. Bu şunu söylemekten farksızdır; eğer madde yoksa madde yoktur, ya da eğer zaman yoksa zaman yoktur. Çünkü her iki ifade de tıpatıp aynı şeyi anlatır. Tuhaftır ama, görelilik teorisinde zamanın ve uzayın ne olduğuna dair bir tanım aramak boşunadır. Einstein şüphesiz bunu izah edilmesi zor bir şey olarak görmüştü. Ne var ki, kendi geometrisi ile klasik Öklid geometrisi arasındaki farkı izah ederken bu noktaya oldukça yaklaşmıştı. İçinde uzayın eğrilmediği bir evren hayal edilebileceğini, ama bunun bütünüyle maddeden yoksun olacağını söylemişti. Bu tastamam doğru bir yöne işaret eder. Kara delikler hakkındaki tüm yaygaralardan sonra, Einstein tarafından bu konuya hiç değinilmediğini keşfettiğinizde şaşırabilirsiniz. O, esasen çok karmaşık bir matematiğe dayalı dikkatli bir yaklaşıma bel bağlamış ve gözlem ve deneyle doğrulanabilecek öngörülerde bulunmuştu. Kara delik fiziği, açıkça saptanmış ampirik verilerin yokluğunda, son derece spekülatif bir karaktere sahiptir.
Devamını oku “Görelilik ve Kara Delikler”

Zamanın Ölçülmesi

zamansatZamanın ne olduğunun tanımlanması bir zorluk çıkarırken, onun ölçülmesi zorluk çıkarmaz. Bilimciler zamanın ne olduğunu açıklamaz, kendilerini zamanın ölçülmesi ile sınırlarlar. Bu iki kavramın birbirine karıştırılmasından sonu gelmez bir kafa karışıklığı ortaya çıkar. Bu yüzden, Feynman şöyle diyor: Belki de, zamanın (sözlük anlamında) tanımlayamayacağımız şeylerden biri olması gerçeğiyle yüzleşip, yalnızca, onun ne olduğunu zaten bildiğimiz bir şey olduğunu söylememiz en iyisidir: Zaman, ne kadar beklediğimizdir! Her halükârda sorun zamanı nasıl tanımlayacağımız değil, onu nasıl ölçeceğimizdir. Zamanın ölçülmesi zorunlu olarak bir referans sistemini ve zamanla değişim gösteren herhangi bir olguyu gerektirir; örneğin dünyanın dönüşü ya da bir sarkacın salınımı. Dünyanın kendi ekseni etrafında günlük dönüşü bir zaman ölçeği sunar. Radyoaktif elementlerin bozunumu uzun zaman aralıklarını ölçmek için kullanılabilir. Zamanın ölçülmesi öznel bir unsur içerir. Mısırlılar gün ve geceyi on ikiye bölmüşlerdi. Sümerler 60’lık bir sayı sistemine sahiplerdi ve bu nedenle de saati 60 dakikaya ve dakikayı da 60 saniyeye böldüler. Metre, dünyanın kutuplarından ekvatora kadar olan uzaklığının 10 milyonda biri olarak tanımlanmıştı (her ne kadar bu tam olarak doğru olmasa da). Santimetre metrenin 100’de biridir, vesaire. Bu yüzyılın başında, atomaltı dünyanın araştırılması iki doğal ölçüm biriminin keşfedilmesine yol açtı: Işığın hızı c, ve Planck sabiti h. Bunlar doğrudan ne uzunluk, ne kütle ne de zamandır, her üçünün birliğidir.
Devamını oku “Zamanın Ölçülmesi”