Termodinamiğin İkinci Yasası

termodinamik“Dünya sona erer böyle
Bir patlamayla değil iniltiyle.”
(T. S. Eliot)

Termodinamik, teorik fiziğin, ısı hareketinin yasalarıyla ve ısının diğer enerji türlerine dönüşümüyle ilgilenen bir dalıdır. Sözcük Yunanca therme (“ısı”) ve dynamis (“kuvvet”) sözcüklerinden türetilmiştir. Aslen deneylerden türetilen, ancak artık aksiyom olarak değerlendirilmekte olan iki temel ilkeye dayanır. Birinci ilke, ısı ve işin eşdeğerliği yasası biçimine bürünen, enerjinin korunumu yasasıdır. İkinci ilke, diğer cisimlerde herhangi bir değişiklik olmaksızın ısının kendiliğinden soğuk bir cisimden sıcak bir cisme geçemeyeceğini ifade eder. Termodinamik bilimi sanayi devriminin bir ürünüydü. 19. yüzyılın başlarında, enerjinin farklı şekillere dönüştürülebileceği ama asla yaratılamayacağı ya da yok edilemeyeceği keşfedilmişti. Bu, fiziğin temel yasalarından biri olan termodinamiğin birinci yasasıdır. Daha sonra, 1850’de, Robert Clausius termodinamiğin ikinci yasasını keşfetti. Bu yasa, “entropi”nin (yani bir cismin enerjisinin sıcaklığına oranı) her tür enerji dönüşümünde, meselâ buhar makinesinde, her zaman arttığını belirtir.

Entropi genellikle, düzensizliğe (dağılmaya) dönük içsel bir eğilim olarak anlaşıldı. Her aile, bir evin bilinçli bir müdahale olmaksızın, bir düzen durumundan düzensizlik durumuna geçme eğiliminde olduğundan gayet haberdardır, hele etrafta çocuklar dolaşıyorsa. Demir paslanır, ağaç çürür, cansız et bozulur, banyodaki su soğur. Diğer bir deyişle, bozulmaya dönük genel bir eğilim varmış gibi görünür. İkinci yasaya göre atomlar, kendi hallerine bırakıldıklarında mümkün olduğunca karışacaklar ve rasgele dağılacaklardır. Paslanma olur, çünkü demir atomları etraflarındaki havada bulunan oksijen atomlarıyla demir oksit oluşturmak üzere birbirine karışma eğilimindedirler. Banyo suyunun yüzeyindeki daha hızlı hareket eden moleküller havadaki daha yavaş hareket eden moleküllerle çarpışır ve enerjilerini onlara iletirler. Bu sınırlı bir yasadır, az sayıda parçacık içeren sistemlere (mikro sistemler) ya da sonsuz sayıda parçacık içeren sistemlere (evren) uygulanamaz. Ne var ki, bu yasasının uygulanışını özel bir alanın oldukça ötesine genişletmeye dönük, her türlü yanlış felsefi sonuçlara yol açan arkası kesilmeyen girişimlerde bulunulmuştur. Geçen yüzyılın ortalarında, termodinamiğin ikinci yasasının kâşifleri R. Clasius ve W. Thomson, bu yasayı bir bütün olarak evrene uygulamayı denediler ve tamamen yanlış bir teoriye ulaştılar; evrenin sonunun “ısıl ölüm” teorisi.
Devamını oku “Termodinamiğin İkinci Yasası”

Boltzmann ve Zaman

İşaret edilmesi gereken temel sorun şudur: Zaman fiziksel evrenin nesnel bir özelliği midir, yoksa tümüyle öznel bir şey, aklın bir yanılsaması veya gerçek hiçbir ilişkisinin olmadığı şeyleri tanımlamanın uygun bir biçiminden mi ibarettir? Bu sonuncu tutum, hepsi de öznel idealizm felsefesiyle yakından ilişkili bir dizi farklı düşünce ekolü tarafından şu ya da bu ölçüde savunula gelmiştir. Gördüğümüz gibi Mach bu öznelciliği bilime sokmuştu. Bu yaklaşım termodinamik biliminin öncüsü olan Ludwig Boltzmann tarafından 19. yüzyılın sonlarına doğru kesin bir biçimde yanıtlanmıştı. Ernst Mach’ın etkisi altındaki Einstein, en azından daha yolun başındayken, henüz bu yaklaşımın son derece zararlı sonuçlarını kavramadan önce, zamanı gözlemciye bağlı olan öznel bir şey olarak ele almıştı. 1905’te, özel görelilik teorisi hakkındaki makalesi, her farklı gözlemciye ilişkin “yerel zaman” kavramını ileri sürmüştü. Buradaki zaman kavramı klasik fizikten aktarılan bir düşünceyi barındırır; zamanın tersinir olduğu düşüncesini. Bu gerçekten de tamamen sıradışı ve tüm deneyimimize meydan okuyan bir kavramdır. Film yapımcıları sıklıkla, kamerayı tersine çalıştırarak elde ettikleri kamera hilelerine başvururlar; süt, bardaktan gerisin geriye şişeye akar, otobüs ve arabalar geri giderler, civcivler kabuklarına geri dönerler vesaire. Tüm bunlara verdiğimiz tepki gülmektir, zaten bu hilelerin amacı da budur. Güleriz, çünkü görmekte olduğumuz şeylerin yalnızca imkânsız olduğunu değil, saçma olduğunu da biliriz. Gördüğümüz süreçlerin tersine çevrilemeyeceğini biliriz.

Devamını oku “Boltzmann ve Zaman”

Olasılıklar Evreni

Termodinamiğin kanunlarını bilirsiniz. Bu kanunların sonucuna göre şöyle bir cümle kurabiliriz.

“Düzensizlik ya değişmez ya da artar.”

Her ne kadar bir kesinliği içerse de gerçekte durum tam olarak bu değildir. Basit bir örnek üstünden gitmeye çalışalım.

Odanın bir köşesine konmuş içinde Klor gazının bulunduğu ucu açık bir tüp düşünelim. Tüpün içinde bulunan klor gazının odaya dağılıp dağılmaması durumunu bu kanunlar ışığında gözlemleyelim. Termodinamiğe göre entropi artışı olacak ve klor gazı mutlaka odaya yayılacaktır.

Aslında işin özünde farklı bir matematiksel süreç yatar. Klor gazının odaya yayılması sadece bir olasılıktır. Fakat tüp içinde kalma olasılığı yayılma olasılık dağılımına göre çok çok daha düşük olduğu için (trilyonda birden daha da küçük) gerçekleşmesi ihtimali zordur. Ama imkansız değildir.

Olasılık kuramları 1900 lü yıllarda gelişip yeni bir bilim dalı olan “istatiksel mekanik” geliştirilmiştir. Termodinamik değerlerden sapmalarla bu teori defalarca ispatlanmıştır.

Bunu para örneği ile açıklayabiliriz. Diyelim ki aynı anda bir milyon bozuk para atılıyor. Hepsinin tura gelme olasılığı vardır. Daha eşit bir dağılımların yüzdesi ise çok daha fazladır. Fakat sonuçta gelen parça dağılımı ne olursa olsun aslında hepsinin tura gelmesiyle aynı olasılığa sahip bir dağılım olacaktır.

Yani kısacası şu; Her olay, milyarlarca olasılıktan sadece birisidir ve yaşadığımız bu evren tamamen matematiksel olasılıklar evrenidir.