Büyük Patlama Teorisinin Geçmişi ve Sorunları

Uzay Evren

“Büyük patlama teorisinden” tek başına bahsetmek aslında doğru değildir. Gerçekte, her biri başı dertten kurtulmayan en azından beş farklı teori vardır. Birincisi, görmüş olduğumuz gibi, 1927’de Lemaître tarafından ileri sürüldü. Bu teori, kısa sürede bir dizi farklı temelde çürütüldü: genel görelilik ve termodinamikten türetilen hatalı sonuçlar, kozmik ışınlar ve yıldızların evrimi hakkında yanlış teoriler vb. İtibarını kaybeden teori, İkinci Dünya Savaşından sonra yeni bir biçim altında George Gamow ve diğerleri tarafından yeniden canlandırıldı. Büyük patlamadan kaynaklanmış olabilecek çeşitli olguları –maddenin yoğunluğu, sıcaklık, radyasyon düzeyleri vb.– açıklamak için Gamow ve diğerleri tarafından birtakım (yeri gelmişken, bir parça bilimsel “yaratıcı muhasebecilikten” yoksun olmayan) hesaplar yapıldı. George Gamow’un parlak yazım tarzı, büyük patlamanın, popüler hayal gücünü ele geçirmesini sağladı. Teori bir kez daha, beklenmedik biçimde ciddi sorunlarla yüz yüze geldi. Sadece Gamow’un modelini değil, onun ardından gelen Robert Dicke ve diğerlerinin “salınan evren” modelini de geçersiz kılan birçok tutarsızlıklar bulunmuştu. Robert Dicke’in “salınan evren” modeli, evreni sonu olmayan bir döngüde salındırarak, büyük patlamadan önce ne olduğu sorununu halletmeye dönük bir girişimdi. Ancak Gamow önemli bir öngörüde bulunmuştu; böyle muazzam bir patlama, geride büyük patlamanın uzaydaki bir çeşit yankısı olarak “fon ışıması” şeklinde bir iz bırakmalıydı. Bu kehanet, birkaç yıl sonra teoriyi yeniden canlandırmak için kullanıldı.
Devamını oku

Yorum Durumu: Yorum yok --- Kategori: Bilim, Felsefe --- Etiketler: , , , , , , , , , , ---

Termodinamiğin İkinci Yasası

termodinamik“Dünya sona erer böyle
Bir patlamayla değil iniltiyle.”
(T. S. Eliot)

Termodinamik, teorik fiziğin, ısı hareketinin yasalarıyla ve ısının diğer enerji türlerine dönüşümüyle ilgilenen bir dalıdır. Sözcük Yunanca therme (“ısı”) ve dynamis (“kuvvet”) sözcüklerinden türetilmiştir. Aslen deneylerden türetilen, ancak artık aksiyom olarak değerlendirilmekte olan iki temel ilkeye dayanır. Birinci ilke, ısı ve işin eşdeğerliği yasası biçimine bürünen, enerjinin korunumu yasasıdır. İkinci ilke, diğer cisimlerde herhangi bir değişiklik olmaksızın ısının kendiliğinden soğuk bir cisimden sıcak bir cisme geçemeyeceğini ifade eder. Termodinamik bilimi sanayi devriminin bir ürünüydü. 19. yüzyılın başlarında, enerjinin farklı şekillere dönüştürülebileceği ama asla yaratılamayacağı ya da yok edilemeyeceği keşfedilmişti. Bu, fiziğin temel yasalarından biri olan termodinamiğin birinci yasasıdır. Daha sonra, 1850’de, Robert Clausius termodinamiğin ikinci yasasını keşfetti. Bu yasa, “entropi”nin (yani bir cismin enerjisinin sıcaklığına oranı) her tür enerji dönüşümünde, meselâ buhar makinesinde, her zaman arttığını belirtir.

Entropi genellikle, düzensizliğe (dağılmaya) dönük içsel bir eğilim olarak anlaşıldı. Her aile, bir evin bilinçli bir müdahale olmaksızın, bir düzen durumundan düzensizlik durumuna geçme eğiliminde olduğundan gayet haberdardır, hele etrafta çocuklar dolaşıyorsa. Demir paslanır, ağaç çürür, cansız et bozulur, banyodaki su soğur. Diğer bir deyişle, bozulmaya dönük genel bir eğilim varmış gibi görünür. İkinci yasaya göre atomlar, kendi hallerine bırakıldıklarında mümkün olduğunca karışacaklar ve rasgele dağılacaklardır. Paslanma olur, çünkü demir atomları etraflarındaki havada bulunan oksijen atomlarıyla demir oksit oluşturmak üzere birbirine karışma eğilimindedirler. Banyo suyunun yüzeyindeki daha hızlı hareket eden moleküller havadaki daha yavaş hareket eden moleküllerle çarpışır ve enerjilerini onlara iletirler. Bu sınırlı bir yasadır, az sayıda parçacık içeren sistemlere (mikro sistemler) ya da sonsuz sayıda parçacık içeren sistemlere (evren) uygulanamaz. Ne var ki, bu yasasının uygulanışını özel bir alanın oldukça ötesine genişletmeye dönük, her türlü yanlış felsefi sonuçlara yol açan arkası kesilmeyen girişimlerde bulunulmuştur. Geçen yüzyılın ortalarında, termodinamiğin ikinci yasasının kâşifleri R. Clasius ve W. Thomson, bu yasayı bir bütün olarak evrene uygulamayı denediler ve tamamen yanlış bir teoriye ulaştılar; evrenin sonunun “ısıl ölüm” teorisi.
Devamını oku

Yorum Durumu: Yorum yok --- Kategori: Bilim, Felsefe --- Etiketler: , , , , , , ---

Nükleer Fisyon

fisyonGörünüşte basit olan ve birçok eşdeğerlerinin de gündelik deneyim içinde yüzlerce kez gözlenebileceği bu örnek, nükleer fisyonda işleyen süreçlere oldukça yakın bir benzerlik sunar. Çekirdeğin kendisi hareketsiz olmayıp, sürekli bir değişim içindedir. Saniyenin katrilyonda biri kadar süre içinde parçacıklar milyarlarca kez rasgele çarpışmalar yaparlar. Parçacıklar sürekli olarak çekirdeğe girmekte ve onu terk etmektedirler. Ancak çekirdek, çoğunlukla güçlü kuvvet olarak tanımlanan kuvvetle bir arada tutulmakta ve kararsız bir denge durumunda kalmaktadır, ya da kaos teorisinin belirttiği gibi “kaosun eşiğinde” bulunmaktadır.

Titreşen bir sıvı damlasında olduğu gibi, içindeki moleküller hareket ettikçe parçacıklar da sürekli olarak hareket eder, kendilerini dönüştürür, enerji alış verişinde bulunurlar. Büyümüş bir yağmur damlası gibi, büyük bir çekirdeğin içindeki parçacıklar arasındaki bağ da kararsızlaşır ve parçalanma olasılığı artar. Çekirdek yüzeyinden düzenli olarak alfa parçacıklarının serbest bırakılması, çekirdeği daha küçük ve kararlı yapar. Ama nötronlarla bombardımana tutulan büyük bir çekirdeğin, atom içerisinde hapsolmuş muazzam miktarlardaki enerjinin bir kısmını açığa çıkararak parçalanabileceği keşfedilmiştir. Bu süreç, parçacıkların dışarıdan müdahalesi olmadan da gerçekleşebilmektedir. Kendi kendine gerçekleşen fisyon süreci (radyoaktif bozunma) doğada her daim ola gelmektedir. Bir libre uranyumda, bir saniye içinde dört tane kendiliğinden fisyon gerçekleşir ve sekiz milyon çekirdekten de alfa parçacıkları yayılır. Çekirdek ne kadar ağır olursa fisyon olması olasılığı da o kadar artar.
Devamını oku

Yorum Durumu: Yorum yok --- Kategori: Bilim --- Etiketler: , , , , , ---

Sicim Kuramı (Membran Teoremi, String Theory)

sicimkurami

Sicim Kuramı, fiziğin temel modellerinden birisidir. Yapı taşı olarak Standart modelde kullanılan boyutsuz noktalar yerine, tek boyutlu uzanıma sahip sicimler kullanılmaktadır. Bu temel yaklaşım farklılığı, parçacıkları noktalar olarak tasvir eden modellerde karşılaşılan bazı problemlerden sakınılmasını sağlamaktadır.

Kuramdaki temel fikir, gerçekliğin esas bileşenlerinin rezonans frekanslarında titreşen ve Planck uzunluğunda olan (10-35 mm civarı) sicimler olduğudur.[1] Sicim teorisine göre evrendeki her madde tek bir şeyden oluşuyor: titreşen ince sicimler. Farklı rezonanslarda titreşen bu sicimler, evrendeki her şeyi meydana getiriyor. Sicim kuramı, evren’i oluşturan en temel, bölünemeyecek kadar küçük bileşenlerinin nokta gibi parçacıklardan değil, titreşen minyatür keman tellerine benzeyen sonsuz küçük döngülerden oluştuğunu öne sürer.[2]

Fizikçilerin karmaşık teorileri, içinden çıkılmaz denklemleri ve insanı şaşkına çeviren bir jargonu anlamak gibi yetenekleri olsa da, aslında onlar basitliği severler. Gerçekliğin, temelde basit olduğunu kabul ederler. İşte bu yüzden parçacık fiziğinin standart modelinden memnun değiller. Bu model, elektronlardan kuarklara, muonlara evrendeki her şeyi oluşturan 57 (son sayımda) farklı parçacığın özelliklerini ve birbirleriyle etkileşimini açıklıyor. (Muon ilk keşfedildiğinde bir fizikçi “Onu da kim sipariş etti?” diye sormuştu.)

Chicago yakınlarındaki Fermilab’da çalışan fizikçi Joe Lykken, “Evrenin en temel parçasının 57 çeşit olması çok gülünç.” diyor. Daha temel bir gerçeklik arayışı, fizikçileri sicim teorisini kabul etmeye yönlendirdi.
Bu teorinin alışılmışın dışında bir özelliği –bazılarına göre bir dezavantajı– var: En az dokuz uzaysal boyut gerektirmesi. Bunlardan altısını ise üç boyutlu bir dünyada yaşayan bizler algılayamıyoruz.

Teori, şu ana kadar deneyle desteklenmedi. Sicimleri gören kimse yok; tahmin edilenden çok, hatta trilyonlarca kat daha küçük olabilirler. Gizli boyutlara gelince, onlar da arabanızın anahtarını nerede unuttuysanız oradalar.

Devamını oku

Yorum Durumu: 2 yorum --- Kategori: Bilim, Denemeler --- Etiketler: , , , , , , , ---

Galileo ve Onyedinci Yüzyılın Bilimsel Devrimi

galileo-AB

Çağcıl bilim, Galileo ile Descartes’in beyinlerinden, Athena’nın Zeus’un başından çıkışı gibi tam ve yetkin bir biçimde fışkırmamıştır .Tersine,-herşeye karşın bir devrim olarak kalan- Galileo ile Descartes devrimi uzun bir düşünce çabasıyla hazırlanmıştı. Bu çabanın tarihinden aynı bengi sorunları inatla inceleyen aynı güçlüklerle karşılaşan aynı engellerle durup dinlenmeden savaşan bu engelleri aşmasını sağlayacak araçlar, gereçler, yeni yeni kavramlar, yeni düşünme yöntemleri geliştiren insan düşüncesinin tarihinden daha ilginç daha öğretici daha şaşkınlık verici birşey yoktur.

Çağcıl fizik en önce ağır cisimlerin yani bizi çevreleyen cisimlerin devinimini inceler .Olguları, günlük deneyimin görüngülerini-düşme olgusu, atma eylemi-açıklama çabasından da bunların temel yasalarını ortaya koymaya götüren düşünce devinimi doğar. Ama bu düşünce devinimi yalnızca ya da doğrudan doğruya bu çabadan kaynaklanmaz. Çağcıl fizik kaynağını yalnızca Yer’e borçlu değildir. Bir o kadar da göklere borçludur. Yetkinliğini ve ereğini göklerde bulur.

Çağcıl fizik, yani Galileo’nun yapıtlarıyla Galileo’nun yapıtlarında doğup Albert Einstein’ın yapıtlarında son bulan fizik, eylemsizlik yasasını en temel yasası diye görür. Çok haklıdır; çünkü eski sözün söylediği gibi; ignoratu motu ignoratur natura; çünkü çağcıl bilim herşeyi “sayı, şekil ve devinim” ile açıklamaya çalışır. Doğrusu bu yasanın içeriğini ve anlamını bütünüyle kavramış olan Galileo değil Descartes’tır. Ama Newton bu yasayı keşfetme onurunu Galileo’ya yüklemekte hepten haksız değildir. Gerçekten Galileo eylemsizlik yasasını hiçbir zaman açıkça dile getirmemiş olsa da mekaniği örtük bir biçimde onun üzerine kurulmuştur.
Devamını oku

Yorum Durumu: Yorum yok --- Kategori: Bilim, Felsefe --- Etiketler: , , , , , , , ---

Kara Delikleri “Gözlemek”

Kara delik sözünü ilk duyduğumda açıkçası çok korkutucu gelmişti. Aklıma ilk gelen, uzayda çevresindeki her şeyi yutarak gitgide büyüyen dev bir nesneydi. Bu kara delik o kadar büyüyecekti ki kaçınılmaz olarak bir gün Dünya’yı da yutacaktı. Şimdi biliyorum ki bu korkum çok yersiz. Her ne kadar evrende çevresindeki yıldızları yutan kara delikler mevcutsa da, bunların sayısı ve etki alanı çok sınırlı.

En basit tanımıyla kara delikler yüzeyinden ışığın bile kaçamadığı yerçekimi kuvvetine sahip nesneler. Genelde tüm özelliklerini anlatmak için Einstein’ın genel görelilik kuramına ihtiyacımız olsa da, basit özelliklerini anlamak için liseden bildiğimiz Newton kanunları yeterli. Kara deliklerde madde o kadar küçük bir alana hapsediliyor ki, yüzeyinden kaçmak için gereken hız, ışık hızını (saniyede 300,000 km) geçiyor. Sonuç olarak ışık dahi kara delikten kaçamıyor, bükülerek yüzeye geri dönüyor. Öyleyse bir kara delik oluşturmak için gereken, başlangıçtaki kütleyi sıkıştırarak hacmini yeterince küçültmek. Aşağıdaki Tablo bize astronomideki tipik kütlelerin kara delik haline gelmesi için sıkıştırılması gereken büyüklükleri veriyor.

 

Cisim Kütle Yarıçap Kara delik yarıçapı**
Dünya 6 x 1024 kg * 6,400 km 9 mm
Güneş 2 x 1030 kg 700,000 km 3 km
Nötron yıldızı 3-4 x 1030 kg 10 – 15 km 4.5 – 6 km
Samanyolu merkezi 3 milyon güneş kütlesi 9 milyon km
M 87 Galaksi merkezi 3 milyar güneş kütlesi 9 milyar km

* Bilimsel notasyon kullanılmıştır, 1024 = 1,000,000,000,000,000,000,000,000 (birden sonra 24 tane 0)
**Kara deliğe dönüştürmek için verilen kütlenin sıkıştırılması gereken yarıçap (Schwarzchild yarıçapı)

Burada bir önemli nokta kara deliklerin çekim alanı ile ilgili. Kara delikten yeterince uzakta (mesela bir kaç yüz Schwarzchild yarıçapı) maddenin tüm dinamiğini Newton yasaları kullanarak tarif etmek mümkün. Daha açık bir örnek vermek istersek, diyelim ki Güneş bir anda kara deliğe döndü. Dünya, diğer gezegenler, göktaşları, kuyruklu yıldızlar hiç istiflerini bozmadan yörüngelerinde dönmeye devam edecekler. Güneş de kara delik oldu diye gezegenleri yutacak değil. Kısacası kara delikten yeterince uzaktaki cisimler için önemli olan merkezdeki toplam kütle: toplam kütleyi oluşturan cismin bir kara delik ya da başka bir astronomik cisim olması fark etmez. Ama kara delik yakınlarına gelirsek iş değişir. Newton kanunları yetersiz kalmaya başlar, Einstein’ın genel görelilik kuramı ve bükülmüş uzay-zamanda hesaplar yapılmaya başlanır.
Devamını oku

Yorum Durumu: Bir yorum --- Kategori: Bilim --- Etiketler: , , , , , , , , ---

Kuantum Kuramının Temel İlkeleri, Felsefesi ve Dünya Görüşü

quantum1

Kuantum Fiziği ya da mekaniği ne benim ne sizlerin ne de mesleğimizin bire bir ilgi alanında olmadığı için oldukça yeni ve çok boyutlu olduğuna inandığım Kuantum olgusunu ister istemez oldukça yüzeysel ve felsefi açıdan ele alıp bu yolda ortaya konulan savların bir kısmını sizinle paylaşmak istiyorum. Formüllerden ve matematiksel verilerden tamamen arındırılmış bir şekilde sunmaya çalışacağım. Kuantum kavramının, neticede bir sona ulaştırılmasının imkansızlığını da baştan kabul ederek, salt bu kavrama olan bazı belirsizlikleri, yada bu kavrama olan yabancılığımızı birazcık ta olsun giderebilmek, bu konu hakkında birazda olsa eskisinden daha yakın bir yakınlaşma yaratma ve bu kavrama karşı küçükte olsa bir pencere açabilerek, ufkumuzda ve düşüncelerimizi, bu kavramı pekiştirebilme amacında bir basamak yukarı çıkarabilmeye yarar sağlayacağı umuyorum.

Temelleri 19. yüzyılın ortalarına dayanan kuantum kavramı, öncelikle kendini fizik alanında göstermiş, gerçek gelişimini 20. yüzyılın ilk yarısında gerçekleştirmiştir.

Kuantum kelime anlamı ile parçacık demektir. Temel felsefesi ise soru sormaktır.
Devamını oku

Yorum Durumu: 7 yorum --- Kategori: Bilim, Felsefe --- Etiketler: , , , , , , , , , , ---