Kara Enerji nedir?

İki ayrı ekip, uzak galaksilerdeki “süpernovaları” gözlemliyordu. Ekiplerden biri Amerikalı Saul Perlmutter, diğeri ise Avusturalyalı Nick Suntzeff ve Brian Schınidt yönetimindeydi. Süpernovalar, içinde bulundukları galaksiden bile daha parlak bir ışık yayarak patlayan yıldızlar olduğundan, çok uzak mesafelerden görülebilirler. İki ekibe ayrılmış astronomların gözlemlediği tür ise “Type la” süpernovaları olarak biliniyordu. Bu türden süpernovaların özelliği, patladıklarında hep aynı parlaklık düzeyine çıkıyor olmalarıdır. Bu yüzden, bir diğerine göre daha soluk olan bir süpernovanın daha uzakta olduğunu saptayabiliriz.

Oysa, astronomların gözlemlediği, daha uzakta olan süpernovaların (Dünyaya olan mesafeleri göz önüne alındığında) olması gerekenden daha soluk olduklarıydı. Bunu açıklamanın tek yolu, yıldızın patlamasından itibaren evrenin genişleme sürecinin hızlandığı ve böylelikle gözlemlenen süpernovanın daha uzakta kalarak beklenenden daha soluk göründüğü olabilirdi.

Bu gözlem bilim dünyasında şok etkisi yarattı. O güne dek, galaksileri etkileyen tek unsurun, ortak kütleçekimsel kuvvet olduğu düşünülüyordu. Bu da genişlemeyi yavaşlatan bir şeydi, hızlandıran değil.

Cisimleri ivmelendiren şey yalnızca uzayın kendisi olabilirdi. Sanılanın aksine, uzay boş olamazdı. Bu durumda uzay, henüz bilimin keşfedemediği, evren üzerinde bir tür kozmik geri tepme gücü uygulayan bir “kara enerji” içermeliydi. Bu kuvvet kütleçekimine karşılık gelerek galaksileri birbirinden uzaklaştırıyordu.

Fizikçiler, iş kara enerjinin ne olabileceğini anlamaya geldiğinde, ciddi bir kafa karışıklığı yaşamaktadır. Çıkarabildikleri en iyi teori olan kuantum mekaniği, boş uzayla bağıntılı bir enerji öngörmekteydi. Fakat bu enerji miktarı, Perlmutter’in gözlemlediğinden, 123 sıfırın takip ettiği 1 kadar daha büyüktü! Nobel ödülü adaylarından Steven Weinberg bu durumu, “bilim tarihindeki en büyük başarısızlık” olarak nitelendirmiştir.

Utanç verici bu duruma rağmen, kara enerjinin olumlu bir çıkanını bulunuyor. Şişme kuramının, evrenin kritik kütlede olmasını gerektirdiğini, ancak evrendeki tüm maddelerin toplamının bu kritik kütlenin ancak üçte birini oluşturabildiğini anımsayın. Diğer taraftan Einstein’ın ortaya koyduğu gibi, tüm enerji türlerinin etkili bir kütlesi vardır. Ve kara enerji de buna dahildir. Aslında bu kütlenin, kritik kütlenin üçte ikisine tekabül etmesi mümkündür. Bu durumda, evren kritik kütleye tam olarak sahip demektir, tıpkı şişme kuramının öngördüğü gibi.

Hiç kimse kara enerjinin ne olduğunu bilmese de, olasılıklardan biri, Einstein tarafından öne sürülen boş uzayın geri tepme gücüdür. Bilim dünyasında her şey Einstein’la başlayıp Einstein’la bitiyormuş gibi görünüyor. Ve Einstein’ın en büyük hatasının, aslında en büyük başarısı olduğu anlaşılıyor.

Getirdiği bütün başarılı çıkarım ve açıklamalarına rağmen, Büyük Patlama’nın yalnızca, evrenin süper-yoğun ve süper-sıcak ilk halinden, galaksiler, yıldızlar ve gezegenlerin var olduğu şu anki haline nasıl geldiğinin bir açıklaması olduğunu belirtmekte fayda var. Her şeyin nasıl başladığı ise halen gizemini koruyor.

Genişleyen Evren

Fakat zaman içinde Einstein’ın içgüdülerinin yanlış olduğu ortaya çıktı. Evrenin yapı taşlarının galaksiler olduğunu ilk kez ortaya koyan Amerikalı astronom Edwin Hubble, 1929 yılında çarpıcı bir keşfin duyurusunu yaptı. Galaksiler, tıpkı kozmik şarapneller gibi, birbirlerinden uzaklaşmaktaydı. Durağan olmak bir kenara, evrenin boyutları sürekli genişliyordu. Einstein, Hubble’ın genişleyen evren keşfini duyar duymaz, kozmik geri tepme teorisinin geçersiz olduğunu açıklayarak, bunun hayatındaki en büyük yanılgısı olduğunu belirtti.1 Einstein’ın esrarengiz geri tepme kuvveti, galaksilerin uzayda hareketsiz durmalarını hiçbir zaman sağlayamazdı. Arthur Eddington’ın 1930 yılında ortaya koyduğu gibi, durağan bir evren aslında niteliği gereği dengesiz ve kararsız bir durumdadır – tıpkı kendi ucu üzerinde dengede duran bir bıçak gibi. Genişlemeye veya daralmaya başlaması için küçücük bir etki yeterli olacaktır.

Bilim adamları Einstein’ın hatasını yinelemedi. 1922 yılında Rus fizikçi Aleksandr Friedmann, Einstein’in kütleçekim teorisini evren üzerinde geçerli olacak şekilde yeniden ele aldı ve evrenin ya genişlediği ya da daraldığı sonucuna ulaştı. Beş yıl sonra bağımsız bir araştırma sürecinin sonunda, Belçikalı Katolik papaz Georges-Henri Lemaitre tarafından ulaşılan sonuç da Friedmann’ınkiyle aynıydı.

John Wheeler’ın dediği gibi: “Einstein’ın kütleçekimini uzay-zamanın eğriliği olarak açıklaması, tüm zamanların en önemli öngörüsüne ulaşmamızı sağladı: Evrenin kendisi de hareket halindeydi.” Einstein’ın kendi teorisindeki bu inanılmayacak ölçüde önemli mesajı kaçırması ise ironik bir durumdur

Evrenin Bilimi

Einstein’ın kütleçekim, yani genel görelilik teorisi kütlelerin nasıl diğer kütlelere çekildiğini açıklamaktadır. Bildiğimiz en büyük madde bileşimi, evrenin kendisidir. Hiçbir zaman bilimin can sıkıcı ciddi sorunlarından kaçmayan bir bilim adamı olarak, Einstein 1916 yılında kütleçekim teorisini evrenin tümü için geçerli olacak şekilde yeniden ortaya koydu. Böylece evrenin kökeni, evrimi ve nihai kaderi üzerine yoğunlaşan evrenbilim alanının da (bir diğer ifadeyle, her şeyin biliminin) kapıları açılmış oldu.

Her ne kadar Einstein’ın kütleçekim teorisinin ardındaki fikirler insanı aldatacak ölçüde basit olsa da, teorinin matematiksel karşılığı kesinlikle basit sayılamaz. Maddenin belli bir dağılımının uzay-zamanı tam olarak nasıl büktüğü konusu üzerinde çalışmak aslında ciddi anlamda zordur. Mesela uzay-zamanda, dönmekte olan bir kara deliğin neden olduğu çarpılmanın hesaplanması, ancak Einstein’ın genel görelilik teorisini yayımlamasından bir yarım yüzyıl sonra, 1962 yılında, Yeni Zelandalı fizikçi Roy Kerr tarafından gerçekleştirilebildi.

Tüm evrenin uzay-zamanı nasıl büktüğü hakkında fikir yürütmek, maddenin uzayda nasıl dağıldığına yönelik basitleştirici varsayımlar yapmaksızın imkansız olurdu. Einstein, gözlemcinin evrenin neresinde bulunduğunun bir önemi olmadığını varsaydı. Diğer bir ifadeyle, nerede bulunursanız bulunun evrenin aynı özelliklere sahip olduğunu ve nereden bakarsanız bakın, her yönden az çok aynı görüneceğini.

Devamını oku “Evrenin Bilimi”

Genel Göreliliğin Sonuçları

Zamanın genleşmesi, Einstein’ın genel görelilik teorisinin çığır açıcı öngörülerinden yalnızca birisidir. Bir diğeri ise az önce değindiğimiz, kütleçekimsel dalgaların mevcudiyetidir. Bu dalgaların var olduğunu biliyoruz, çünkü astronomlar, en azından biri nötron yıldızı olan bir yıldız çiftini gözlemlediklerinde, bu yıldızların birbirlerine doğru sarmal oluştururlarken enerji kaybettiklerini fark etmiştir. Bu enerji kaybı ancak kütleçekimsel dalgalar tarafından taşınıyor oldukları takdirde açıklanabilir.

Günümüzde, kütleçekimsel dalgaların doğrudan tespit edilebilmesi üzerinde çalışılıyor. Bu dalgaların, uzayı dönüşümlü olarak gerip sıkıştırmaları gerektiği düşünüldüğünden, dalgaları tespit etmek için kurulan deney düzeneklerinde birkaç kilometre uzunluğunda dev “cetveller” kullanılıyor. Cetveller ışıktan yapılıyor olsa da, bu düzeneğin ardındaki fikir oldukça basit – kütleçekimsel dalgalar bizi geçerken, cetvellerin uzunluklarında oluşan değişiklikleri tespit etmek.

Einstein’ın teorisinin, şu ana dek üzerinde yorum yapmadan geçtiğimiz bir diğer öngörüsü de, ışığın kütleçekimi tarafından eğilmesidir. Bu eğilmenin nedeni, ışığın dört boyutlu uzay-zamanın bükülmüş coğrafyasını takip etmek durumunda olmasıdır. Her ne kadar Newton’un kütleçekim kanunu bu türden bir etkinin mevcudiyetini ortaya koymasa da, bu kanun -ışık da dahil olmak üzere tüm enerji türlerinin etkin kütleye sahip olduğuna yönelik özel görelilik fikriyle birleştirildiğinde, bunun böyle olması gerektiği ortaya çıkıyor. Işık, güneş gibi büyük kütleli bir cismi geçerken, yıldızın kütleçekiminin etkisine maruz kalarak rotasından hafif bir şekilde sapar.

Devamını oku “Genel Göreliliğin Sonuçları”

Genel Görelilik nedir?

Einstein’ın kütleçekimini nasıl yeniden ele aldığı artık açıklığa kavuşmuş olmalı. Kütleler, örneğin güneş gibi yıldızlar, etraflarındaki uzay-zamanı büker. Bu durumda, diğer kütleler, örneğin dünya gibi gezegenler, kendi eylemsizlikleri altında ve bükülmüş uzay-zaman içerisinde serbest bir şekilde hareket eder. İzledikleri rotalar eğiktir, çünkü bunlar bükülmüş bir uzay içinde olası en kısa rotalardır. Bu kadar. Genel görelilik teorisi budur.

Ancak şeytan ayrıntılarda gizli. Gezegen gibi kütleli bir cismin bükülmüş uzay içerisinde nasıl hareket ettiğini biliyoruz. Mümkün olan en kısa rotayı izliyor. Peki ama, güneş gibi bir kütle, etrafındaki uzay-zamanı tam olarak nasıl büküyor? Einstein’ın bu soruyu cevaplaması 10 yıldan daha uzun bir zaman aldı; konunun detayları ise telefon rehberi büyüklüğündeki bir kitabı doldurabilirdi. Yine de Einstein’ın genel görelilik teorisini oluştururken yola çıktığı noktayı anlamak o kadar da güç değil. Aslında bu nokta, eşdeğerlik ilkesi.

Yeniden camları karartılmış mekik içindeki çekiç ve tüye dönelim. Astronot için bu iki cisim kütleçekiminin kuvvetiyle zemine düşüyorlarmış gibi görünecektir. Ancak deneyi mekiğin dışından takip eden birisi, çekiçle tüyün yalnızca havada asılı olduklarını ve kabin zemininin bu cisimlerle karşılaşmak için yukarı doğru ivmelendiğini görecektir. Cisimler tamamen ağırlıksızdır.

Bu gözlem temel bir öneme sahip. Serbest düşüş içerisinde olan bir cisim kütleçekimi hissetmez. Bir asansörün içinde olduğunuzu ve kabloların koptuğunu düşünelim. Asansör düşerken, ağırlığınız olmaz. Kütleçekimini hissetmezsiniz.

Devamını oku “Genel Görelilik nedir?”

Kütleçekim Kuvveti Diye Bir Şey Yok!

Kütleçekiminin hayali bir kuvvet olduğu fikri biraz zorlama gelebilir. Fakat deneyimlediğimiz diğer tüm gündelik olayları anlamlandırabilmek için çeşitli kuvvetler icat etmekten geri durmadığımız da bir gerçek. Sert bir virajı dönmekte olan bir otomobilin içindeki yolcu olduğunuzu düşünün. Otomobilin içinde size olan şeyi açıklamak için bir merkezkaç kuvvetini icat edersiniz. Gerçekte ise böyle bir kuvvet yoktur.

Harekete geçen tüm kütleli cisimler, düz bir çizgi üzerinde sabit bir hızla yol alma eğilimindedir. Eylemsizlik olarak bilinen bu özellik nedeniyle, sizin gibi bir yolcu da dahil olmak üzere, otomobil içindeki sabitlenmemiş tüm cisimler, aracın virajı dönmeden önceki yönünde yol almaya devam ederler. Ancak aracın kapısının takip ettiği yol bir eğridir. Sert bir viraj alan otomobilin içinde bir anda kendinizi kapıya yapışmış olarak bulmanız hiç de şaşırtıcı olmaz. Ancak aslında olan şey, tıpkı uzay mekiğinin ivmelenen zemininin çekiç ve tüyle buluşması gibi, kapının da sizinle buluşmak üzere yaklaşıyor olmasıdır. Ortada hiçbir kuvvet yoktur.

Merkezkaç kuvveti, bir eylemsizlik kuvveti olarak bilinmektedir. Hareketimizi açıklamak için bu türden bir kuvvet yaratmamızın nedeni, gerçeği görmezden gelmemizden başka ne olabilir ki? Yani çevremizdeki unsurların da bize göre hareket içinde olduğu gerçeğini. Viraj dönen otomobil içindeki hareketimiz sadece eylemsizliğimizin bir sonucudur; bir diğer ifadeyle, düz bir çizgi üzerinde hareketimizi sürdürmeye yönelik doğal eğilimimizin. Kütleçekiminin de bir eylemsizlik kuvveti olduğunu fark etmek ancak Einstein’ın inanılmaz içgörüsü sayesinde olmuştur. Einstein, “kütleçekimi ve eylemsizlik özdeş şeyler olabilir mi?” diye sorar. “İşte bu soru sizi doğrudan kütleçekim teorime götürecek.”

Einstein’ a göre, ağaçlardan düşen elmaları ya da gezegenlerin güneşin etrafında dönüşünü kendimize açıklayabilmek için, kütleçekim kuvvetini biz uydurduk. Çünkü çevremizdeki unsurların bize göre ivmelenmekte olduğunu görmezden geldik. Fakat cisimler yalnızca eylemsizliklerinin bir sonucu olarak hareket eder. Kütleçekim kuvveti diye bir şey yoktur!

Durun bir dakika! Kütleçekim kuvveti nedeniyle gerçekleştiğini sandığımız hareket, aslında sadece eylemsizliğin bir sonucuysa, bunun anlamı, dünya gibi kütlelerin gerçekten de uzayda düz bir çizgi üzerinde ve sabit hızla uçuyor olması gerektiğidir. Bu ne kadar da saçma! Sonuçta dünya, güneşin etrafında dönüyor, düz bir çizgi üzerinde uçtuğu da yok, değil mi? Tam olarak öyle değil. Aslında her şey, düz bir çizgiyi nasıl tanımladığınıza dayanıyor.

Kütleçekimi Hakkındaki Tuhaflık

Söz konusu bağlantıyı anlamak için, kütleçekiminin tuhaf bir özelliğini göz önüne almamız gerekiyor. Tüm cisimler, kütlelerinden bağımsız olarak, aynı hızda yere düşer. Örneğin bir yerfıstığı, bir insanla aynı sürede hızlanır. Bu davranış ilk kez olarak 17. yüzyıl İtalyan bilim adamı Galileo tarafından fark edilmişti. Galileo’nun, kütleçekiminin bu özelliğini gözlemlemek için, yanına biri hafif diğeri ağır iki cisim alarak, her ikisini de aynı anda Pisa Kulesi’nden attığı söylenir. İki cisim de yere aynı anda iner.

Kütleçekiminin bu özelliğinin dünya üzerinde her zaman aynı şekilde gözükmemesinin nedeni, hava direncinin farklı ağırlıktaki cisimler üzerinde farklı etkilere yol açıyor olmasından başka bir şey değildir. Bununla birlikte, Galileo’nun deneyi cisimlerin düşüş süresini değiştiren hava direncinin olmadığı bir ortamda mesela ayda yinelenebilir. 1972 yılında, Apollo 15 komutanı Dave Scott bir çekiç ve tüyü aynı anda yere bıraktı. Ve beklendiği üzere, her ikisi de ay zeminine tam olarak aynı anda indi.

Bu olayın tuhaf yanı ise genellikle cismin bir güce karşılık nasıl hareket edeceğinin, cismin kütlesine bağlı olduğudur. İşleri karıştıracak sürtünme unsurunun bulunmadığı, buz pateni pisti gibi bir zemin üzerinde, tahta bir tabure ve dolu bir buzdolabı düşünelim. Ve iki kişinin buzdolabı ve tabureyi tam olarak aynı ölçüde bir kuvvet uygulayarak ittiğini. Buzdolabına göre daha az kütleye sahip olan tabure açık bir şekilde daha kolay itilebilecek ve daha kısa sürede hız kazanacaktır.

Peki ama, tabure ve buzdolabı kütleçekim kuvveti altında nasıl davranır? Her ikisini de 10 katlı bir apartmanın tepesinden aşağı bıraktığımızı düşünelim. Bu durumda, Galileo’nun da öngöreceği gibi, tabure buzdolabına nazaran daha kısa sürede hız kazanamaz. Aralarındaki ciddi boyutlardaki kütle farkına rağmen, tabure de buzdolabı da zemine doğru düşerken aynı oranlarda hız kazanır.

Artık kütleçekimi hakkındaki tuhaf durumun ne olduğunu anlamış bulunuyoruz. Büyük bir kütle, küçük kütleli bir cisme nazaran, daha büyük bir kütleçekim kuvveti hisseder ve bu kuvvet cismin kütlesiyle doğru orantılıdır. Yani büyük kütle küçük kütleyle tam olarak aynı oranlarda hız kazanır. Peki ama, kütleçekimi, kuvvet uygulayacağı cisme göre kendisini nasıl ayarlamaktadır? Kütleçekiminin bunu inanılamayacak ölçüde basit ve doğal bir şekilde gerçekleştirdiğini fark etmek için gerekli olan, Einstein’ın dehası oldu. Dahası bu yolun, kütleçekimini kavrayışımız üzerinde de önemli sonuçları olduğu anlaşıldı.