Bir Atom Nasıl Aynı Anda Birden Çok Yerde Olabilir ve Birden Çok Şey Yapabilir

Abaküsle dünyanın en hızlı süper-bilgisayarı arasındaki farkı düşündüğünüz takdirde bile bir kuantum bilgisayarının günümüzün bilgisayarlarından ne kadar daha güçlü olduğunu anlamanın yakınından geçemezsiniz.
Julian Brown

Yıl 2041 . Küçük bir çocuk, odasındaki bilgisayarın başına oturuyor. Bu sıradan bir bilgisayar değil. Bu bir kuantum bilgisayarı. Çocuk bilgisayara bir komut veriyor. . . Aynı anda bilgisayar kendi binlerce kopyasına bölünüyor ve her biri problemin farklı bir dalı üzerinde çalışmaya koyuluyor.

Yalnızca birkaç saniye sonra, dallar yeniden bir araya geliyor ve bilgisayarın gösterge panelinde tek bir cevap yanıp sönüyor. Dünyadaki bütün bilgisayarlar bir arada çalıştırılsa bile bu cevabı bulmaları trilyonlarca yıl alırdı. Sonuçtan memnun olan çocuk bilgisayarı kapatıyor ve oyununa geri dönüyor. Bu akşam için ev ödevi bitmiş durumda.

working pattern internet abstract

Çocuğun bilgisayarının yapabildiğini aslında hiçbir bilgisayar yapamaz, değil mi? Bir bilgisayarın bunu yapabileceği gerçeği bir kenara, bu bilgisayarların taslak halindeki ilk versiyonları günümüzde bile mevcuttur. Üzerinde ciddi tartışmaların döndüğü asıl nokta ise, bu türden bir kuantum bilgisayarının yalnızca çok fazla sayıdaki bilgisayarın toplamı gibi mi çalışacağı, yoksa bazılarının inandığı gibi, kendi kendisinin paralel gerçeklikler veya evrenlerde var olan birçok farklı kopyasının bilgi işlem gücünden mi yararlanacağı sorusudur.

Kuantum bilgisayarının temel özelliği olan aynı anda birçok işlemi birden yapabilme yetisi, dalgaların (dolayısıyla da, dalgalar gibi davranan atom ve fotonların da) yapabildiği iki şeyden kaynaklanmaktadır. Bunlardan ilki, okyanus dalgalarında görülebilir.

Okyanusta hem büyük dalgalar hem de küçük dalgacıklar oluşur. Ancak rüzgarlı bir günde dalgalı bir denizi seyreden herkesin bilebileceği gibi, büyük dalgaların üzerinde küçük dalgacıklar da görebilirsiniz. Bu, tüm dalgaların genel bir özelliğidir. Eğer iki farklı dalga var olabiliyorsa, aynı şekilde, dalgaların bir kombinasyonu, yani süperpozisyonu da var olabilir.

ocean water wave photo

Süperpozisyon gerçeği, gündelik dünyada önemsiz bir şey gibi görünebilir. Ancak atomlar ve bileşenlerinin dünyasında, bu durumun etkileri sarsıcı düzeydedir.

Bir kez daha, pencere camına vuran fotonu düşünelim. Schrödinger denkleminin ortaya koyduğu gibi, foton ne yapacağı konusunda bir olasılık dalgası tarafından bilgilendirilir.

Fotonun camdan geçmesi de, geri yansıması da olasılık dahilinde olduğundan, Schrödinger denklemi iki dalganın varoluşuna imkan tanımalıdır – biri camdan geçip gidecek, diğeri de geri yansıyacak foton için. Burada şaşırtıcı bir durum yok. Fakat şunu unutmamak gerekiyor ki, aynı anda iki dalganın birden var olmasına imkan tanındığında, bu dalgaların bir süperpozisyonunun var olmasına da imkan tanınmış olur. Deniz dalgaları için konuşacak olursak, bu türden bir kombinasyon kimse için inanılmaz bir durum değildir. Ancak atomların dünyasında söz konusu kombinasyon olağanüstü sayılabilecek bir duruma tekabül eder: aynı anda hem camdan geçen hem de geri yansıyan bir fotonun varlığına. Diğer bir deyişle, foton aynı anda camın iki tarafında birden bulunabilmektedir.

Tahayyül sınırlarımızı zorlayan bu özellik, iki kaçınılmaz gerçekten kaynaklanıyor: fotonların dalgalar tarafından tanımlandığı ve dalgaların süperpozisyon hallerinin olası olduğu gerçeklerine.

Bu uçuk bir teori değil. Yapılan deneylerde, aynı anda iki yerde birden bulunan bir foton ya da atomu gözlemlemek gerçekten de mümkündür (daha doğru bir ifadeyle ortaya koyacak olursak, aynı anda iki yerde birden bulunan bir foton ya da atomun neden olduğu sonuçları gözlemlemek mümkündür). Bu durumun gündelik hayatımızdaki karşılığı, aynı anda hem San Francisco hem de Sydney’de bulunabilmenizdir. Dahası, üst üste binecek dalgaların sayısının bir sınırı olmadığından, bir foton ya da atom aynı anda üç, on ya da bir milyon yerde olabilir.

adult book boring face

Öte yandan mikroskobik bir parçacıkla bağlantılı olasılık dalgası, bu parçacığa nerede bulunabileceğinden daha fazla bilgi vermektedir. Olasılık dalgası, parçacığa tüm durumlar dahilinde nasıl davranacağını da bildirir (örneğin bir fotona, pencere camının içinden geçip geçmeyeceğini ya da camdan geri yansıyıp yansımayacağını).

Dolayısıyla atomlar ve türevleri yalnızca aynı anda birçok yerde bulunabilmekle kalmaz, aynı anda birçok işi de gerçekleştirebilirler. Bunun gündelik yaşantımızdaki karşılığı ise aynı anda ev temizliği yapmanız, köpeği dolaştırmanız ve haftalık süpermarket alışverişini halletmenizdir.

Kuantum bilgisayarının muazzam gücünün ardındaki giz budur. Atomların aynı anda birçok işi yapabilme yetisini kullanan kuantum bilgisayarları, aynı anda çok sayıda hesaplamayı yapabilmektedir.

Tanrı neden zar atar?

Öngörülemeyeni Öngörmek

Penceremize geri dönelim. Her fotonun yüzde 95 camdan geçme ve yüzde 5 de geri yansıma olasılığı var. Fakat bu olasılıkları ne belirliyor?

Işığın parçacık ve dalga olarak çizilen iki farklı portresi de aynı sonucu vermek durumundadır. Şayet dalganın yarısı geçiyor ve yarısı yansıyorsa, dalga ve parçacık görüşlerini bağdaştırmanın tek yolu, her bir parçacığın da yüzde 50 geçme ve yüzde 50 yansıma olasılığı olmasıdır. Aynı şekilde, eğer dalganın yüzde 95’i geçiriliyor ve yüzde 5’i yansıtılıyorsa, her bir foton için buna karşılık gelen geçme ve yansıma olasılıkları yüzde 95 ve yüzde 5 olmalıdır.

background beautiful blossom calm waters

Işığın bu iki portresi arasında bir uyum olabilmesi için parçacık davranışının, dalga davranışı hakkında bir şekilde “bilgi sahibi” olması gerekir. Bir başka deyişle, mikroskobik dünyada yalnızca dalgalar parçacık gibi değil, parçacıklar da dalga gibi davranmaktadır! Burada mükemmel bir simetri söz konusu. Aslına bakılacak olursa, bu ifade bir anlamda, kuantum kuramı hakkında bilmeniz gereken (birkaç detay dışında) tek şeydir. Geriye kalan her şey bunu kaçınılmaz bir şekilde takip eder. Tüm bu tuhaflık ve mikroskobik dünyanın hayret verici zenginliği, gerçekliğin temel yapı taşlarının dalga-parçacık ikiliğinin doğrudan bir sonucudur.

abstract background beach color

Ancak ışığın dalga hali, parçacık halini nasıl davranacağı hakkında tam olarak nasıl bilgilendiriyor? Bu hiç de kolay bir soru değil.

Işık kendisini, bir parçacıklar akımı olarak veya dalga şeklinde açığa vurur. Hiçbir zaman bir madalyonun aynı anda iki yüzünü birden görmeyiz . Yani ışığı parçacıklar akımı olarak incelediğimizde, ortada parçacıkları nasıl davranacakları konusunda bilgilendirecek bir dalga yoktur. Dolayısıyla fizikçiler fotonların bir dalga tarafından yönlendirilerek (camın içinden gitmek gibi) bir şeyler yaptığını açıklamakta problem yaşamaktadır.

Bu problemi kendilerine özgü bir yoldan çözmeye girişen fizikçiler, gerçek dalganın yokluğunda, soyut bir dalga hayal etmektedir – matematiksel bir dalga. Kulağa gülünç geliyorsa, şunu söyleyeyim ki, bu fikir ilk olarak 1920 yılında Avusturyalı fizikçi Erwin Schrödinger tarafından ortaya atıldığında, fizikçilerin tepkisi de sizinkiyle aynı olmuştu.

Schrödinger tıpkı gölette yayılan bir su dalgası gibi, uzayda yayılan, engellerle karşılaşarak yansıyan ve iletilen soyut bir matematiksel dalga hayal etti. Dalga yüksekliğinin arttığı yerlerde bir parçacığın bulunma olasılığı en üst düzeydeyken, dalga yüksekliğinin düşük olduğu noktada bu olasılık en alt düzeye inmekteydi. Böylelikle Schrödinger olasılık dalgasıyla, sadece fotonları değil; bir atomdan, atomu teşkil eden elektronlara kadar, tüm mikroskobik parçacıkları nasıl hareket edecekleri hakkında bilgilendiren dalga fonksiyonunu vaftiz etmiş oldu.

Burada ince bir nokta söz konusu. Fizikçiler Schrödinger’in yaklaşımını, herhangi bir noktada parçacık bulunma ihtimali ancak olasılık dalgasının o noktadaki yüksekliğinin karesiyle orantılıysa gerçeğe uydurabiliyorlardı.

Başka bir deyişle, uzayda herhangi bir noktada olasılık dalgası başka bir noktada olduğunun iki katı yükseklikteyse, parçacığın orada bulunma ihtimali diğer noktaya göre dört kat büyük olmalıdır.

Olasılık dalgasının kendisinin değil de karesinin fiziksel bir gerçeği ifade ediyor olması, günümüzde bu dalganın, evrenin altında yatan gerçek bir şey mi, yoksa kullanışlı matematiksel bir gereç mi olduğu tartışmalarını doğurmuştur. Bilim adamlarının büyük çoğunluğu ikinci görüşe taraftır.

Olasılık dalgasının kesin bir öneme sahip olmasının nedeni, maddenin dalgasal tarafıyla, su dalgalarından deprem dalgalarına kadar tanışık olduğumuz diğer tüm dalga türleri arasında bağlantı kurmasıdır. Tüm dalgalar, dalga denklemi olarak bilinen bir denkleme riayet eder. Bu denklem, dalgaların uzayda nasıl yayıldığını tanımlayarak, fizikçilerin herhangi bir yer ve zamanda dalga yüksekliğini öngörebilmesine imkan tanımaktadır.

Schrödinger’in büyük başarısı, atomlar ve türevlerinin olasılık dalgalarının davranışını tanımlayan dalga denklemini bulmasıdır. Schrödinger denklemini kullanarak uzayda herhangi bir yer ve zamanda bir parçacık bulunma olasılığını hesaplamak mümkün. Örneğin pencere camına vuran fotonları tanımlamak ve fotonlardan birini camın diğer tarafında bulmanın yüzde 95’lik olasılığını öngörmek için bu denklem kullanılabilir. Aslında Schrödinger denklemi, foton ya da atom olsun, herhangi bir parçacığın herhangi bir davranışı sergileme olasılığını tahmin etmek için kullanılabilir. Bu durum, fizikçilere mikroskobik dünyada olup bitenleri öngörebilmek için bir köprü oluşturur, yüzde 100 kesinlikle olmasa da, en azından öngörülebilir bir belirsizlik dahilinde !

Olasılık dalgaları üzerine bu konuştuklarımız bizi nereye götürüyor? Mikroskobik dünyada dalgaların parçacıklar gibi hareket ediyor olduğu gerçeği, ister istemez , mikroskobik dünyanın gündelik yaşantımızdan tamamen farklı bir mekanizmaya sahip olduğunu anlamamıza yol açıyor. Mikroskobik dünyada rastlantısal bir belirsizlik hüküm sürmektedir. İlk kez ortaya çıktığında bu gerçek, saat gibi işleyen öngörülebilir bir evrene inanan fizikçiler için tam anlamıyla sarsıcı bir darbe olmuştu. Ve anlaşıldığı kadarıyla bu durum sadece başlangıçtı. Zaman içinde, doğanın zulasında birçok sarsıcı gerçek daha olduğu anlaşıldı. Yalnızca dalgaların parçacık gibi davranıyor olmayıp, parçacıkların da dalga davranışları sergiliyor olması, su ve ses dalgaları gibi bize daha tanıdık gelen dalgaların yapabildiği her şeyi , atomların, fotonların ve türdeşlerinin davranışlarını ileten olasılık dalgalarının da yapabileceğini anlamamızı sağladı.

Yani? Durum şu ki, dalgalar birçok farklı davranışta bulunabilir. Ve bu davranışların her birinin mikroskobik dünyada yarı-mucizevi sonuçlar doğurduğu anlaşılmıştır.

Dalgaların yapabileceği şeylerden en açık olanı, süperpozisyon halinde var olabilmeleridir. Süperpozisyon, bir atomun aynı anda iki farklı yerde bulunabilmesine imkan tanır. Sizin aynı anda hem Londra hem de New York’ta bulunmanız gibi.

Işık nedir? Madalyonun iki yüzü

Işık ve maddenin etkileşimi günlük yaşantımız açısından çok önemlidir. Ampul telindeki atomlar ışık yaymasaydı, evlerimizi aydınlatamazdık. Gözünüzdeki retina tabakasını oluşturan atomlar ışığı soğurmasaydı, bu kelimeleri okuyamazdınız. Problem şu ki, ışık bir dalga olsaydı, atomlar tarafından yayımlanması ve soğurulmasım açıklamak mümkün olmazdı.

Atom uzayda oldukça küçük bir boşluğa sabitlenmiş bir şeyken, ışık dalgası yayılan ve oldukça büyük boşluk kaplayan bir şeydir. Peki öyleyse, ışık atom tarafından soğurulduğunda, böylesi büyük bir şey nasıl olur da küçücük bir şeyin içine sığar? Ve ışık atom tarafından yayımlandığında, böylesi küçük bir şey nasıl olur da kocaman bir şeyi çıkartmayı başarabilir?

Sağduyumuzu kullanarak konuya yaklaşacak olursak, ışığın böylesine küçük ve uzayda belli bir yerde bulunan bir şey tarafından soğurulabilmesi veya yayımlanabilmesi için, ancak kendisinin de aynı oranda küçük ve belli bir yerde bulunan bir şey olması gerektiğini çıkarabiliriz.

ışık

Söylenegeldiği üzere, “bir yılanın içine en iyi sığan şey yine bir yılandır.”

Fakat ışık, dalga olarak biliniyordu. Fizikçiler için bu güç durumdan kurtulmanın tek yolu, umutsuzluk içinde kollarını açmaları ve ışığın hem dalga hem de tanecik olduğunu kabul etmeleriydi. Ancak aynı anda hem bir dalga gibi dağınık hem de uzayda yeri belli olan bir şey olamazdı. Gündelik hayatta bu tam anlamıyla doğrudur. Ne var ki, burada gündelik hayattan değil, mikroskobik dünyadan bahsediyoruz.

Atom ve fotonların mikroskobik dünyasının yakından tanıdığımız hiçbir şeye benzemediği ortaya çıkmaktadır. Hem, aşina olduğumuz nesnelerden milyonlarca kez daha küçük olduklarını düşünürsek, neden benzesinler ki?

Işık gerçekten de hem bir parçacık hem de bir dalgadır. Daha doğru bir ifadeyle , ışık, kullandığımız dilde herhangi bir karşılığı ve günlük yaşantımızda mukayese edebileceğimiz herhangi bir benzeri olmayan, “başka bir şeydir.”

Tıpkı bir madalyon gibi, tüm görebildiğimiz onun ya parçacık yüzü ya da dalga yüzüdür. Işığın gerçekte ne olduğu ise doğuştan görme engelli bir insan için renklerin ifade ettiği şey kadar bilinmezdir.

Işık bazen bir dalga, bazense parçacık akımı gibi davranır. Bu durum, 20. yüzyılın b aşlarında fizikçiler için kabul edilmesi çok güç bir şeydi. Fakat bir tercih şansları da yoktu; doğanın ortaya koyduğu net olarak buydu.

İngiliz fizikçi William Bragg, 192l’de, “Pazartesi, çarşamba ve cuma günleri dalga teorisini; salı, perşembe ve cumartesi günleri ise parçacık teorisini öğretiyoruz,” diyerek yaşanan ikilemi kendi mizahi bakış açısıyla değerlendirmişti.

Bragg’ın pragmatist yaklaşımı takdire şayan olsa da, bu mizahi bakış açısı fiziği yıkımdan kurtarmaya yeterli değildi. İlk olarak Einstein tarafından fark edildiği üzere, ışığın ikili dalga-parçacık doğası fizik için tam bir felaket demekti. Ortaya çıkan durum, yalnızca zihinde canlandırılması imkansız değil, aynı zamanda o güne dek bilinen tüm fizikle de tam bir uyumsuzluk içindeydi.

Uzay Denizindeki Dalgalanmalar

19. yüzyıl başlarında , Rosetta Taşı’nı Fransız Jean François Champollion’dan bağımsız olarak deşifre etmesiyle ün salmış olan İngiliz fizikçi Thomas Young, ışık geçirmez bir perdede birbirine çok yakın iki dikey yarık oluşturarak perdeyi tek renkli bir ışıkla aydınlattı. Şayet ışık bir dalgaysa , her yarığın yeni bir dalga kaynağı gibi davranacağını ve bu ayrı kaynaklardan çıkan iki ışığın perdenin uzak tarafına , küçük bir gölde oluşan iç içe geçmiş dalgalara benzer şekilde yayıla cağını düşündü.

Girişim [interference] dalgaların sergilediği karakteristik bir özelliktir. İki benzer dalga birbirinin içinden geçerken, dalga tepelerinin birbirine denk düştüğü noktalarda kuvvetlenir, birinin dalga tepesi diğerinin dalga çukuruna rastladığında ise birbirlerini sönümlendirirler.

Sağanak yağmur yağarken bir su birikintisine bakarsanız, her bir yağmur damlacığının oluşturduğu dalgalanmaların yayılarak birbirleriyle “yapıcı” ve “yıkıcı” şekilde girişim de bulunduğunu görürsünüz.

Young, açtığı iki yarıktan çıkan ışığın önüne ikinci bir beyaz perde koydu. Ve bunu yaptığı anda, süpermarket barkodlarındaki gibi, ardı sıra dizilmiş karanlık ve aydınlık şeritler gözlemledi. Bu girişim deseni, ışığın dalga olduğunu gösteren inkar edilemez bir kanıttı. İki yarıktan çıkan ışığın dalga tepeleri birbirine ayak uydurduğunda ışığın parlaklığı artıyor; uyduramadıklarında ise ışık sönümleniyordu.

Young “çift yarık” düzeneğini kullanarak ışığın dalga boyunu hesaplamayı başardı. Bu dalga boyu, milimetrenin yalnızca binde birine tekabül eden (insan saçından bile daha ince) bir değerdi. Bu değer, daha önce ışığın dalga olabileceğinin neden tahmin edilemediğini açıklıyordu.

Gelecek iki yüzyıl boyunca, Young’ın ışığın uzay denizindeki dalgalanmalar olduğu görüşü, tüm ışık olaylarını açıklamada geçerli oldu. Fakat 19. yüzyılın sonlarına doğru, bu konuda sorunlar yaşanmaya başladı. Her ne kadar ilk zamanlarda çok az kişi farkına varmış olsa da, ışığın dalga olduğu görüşüyle, atomun maddenin en küçük yapı taşı olduğu fikri uzlaşmıyordu.

Sorun, ışıkla maddenin bir araya geldiği kesişim noktasındaydı.

Schrödinger Dalga Denklemi

Eğer parçacıklar da dalga gibi yayılabiliyorsa, nerede olduklarını nasıl söyleyebiliriz? Erwin Schrödinger dalga gibi davranan bir parçacığın bulunabileceği konumu ihtimale bağlı olarak veren çığır açıcı bir denklem buldu. Bu denklem atomlarda elektronların enerji düzeylerini de verdiği için kuantum mekaniğinin yanı sıra modern kimyayı da başlatmıştır.

Işığın da aralarında olduğu elektromanyetik dalgalar, her ikisinin de özelliğini gösterir ve hatta atomaltı parçacıklar ile moleküller bile tıpkı dalgalar gibi kırınabilir ve girişim yapabilir.

Fakat dalgalar sürekliyken parçacıklar değildir. Bu durumda dalga gibi yayılmış haldeki parçacığın nerede bulunduğunu nasıl söyleyebiliriz? Avusturyalı fizikçi Erwin Schrödinger’in 1926’da bulduğu denklem, dalga fiziğini ve olasılık kullanarak dalga gibi davranan bir parçacığın belli bir konumda bulunma ihtimalini verir.

Denklem ilk olarak atomlarda elektronların yerlerini belirlemek için kullanıldı. Schrödinger denklemi dalga-parçacık ikiliği fikrinin yalnızca atomlar için değil, tüm maddeler için geçerli olduğunu göstererek fizikte bir devrim yaratmıştır.