Faz Geçişleri

faz-degisimi

En önemli inceleme alanlarından biri, maddenin katıdan sıvıya, sıvıdan buhara; ya da mıknatıssızlıktan mıknatıslılığa; yahut iletkenden süperiletkene dönüştüğü kritik noktayı oluşturan ve faz geçişleri olarak bilinen olguyla ilgilidir. Tüm bu süreçler farklıdır, oysa şimdi bunların benzer oldukları kuşkuya yer bırakmayacak şekilde saptanmıştır, öyle ki, bu deneylerin birisine uygulanan matematik diğerlerine de uygulanabilmektedir. James Gleick’ın aşağıdaki satırlarının gösterdiği gibi, bu nitel sıçramanın çok açık bir örneğidir: Çoğunlukla kaosta da olduğu gibi, faz geçişleri makro düzeyde öyle birtakım davranış biçimleri içerir ki, mikro düzeydeki ayrıntılara bakarak bunları öngörmek pek kolay olmaz. Katı bir cisim ısıtıldığında eklenen enerjinin etkisiyle molekülleri titreşir. Moleküller aralarındaki bağlara rağmen dışarıya doğru itişirler ve maddeyi genleşmek zorunda bırakırlar. Isı arttıkça genleşme de artar. Ancak, belirli bir sıcaklık ve basınca erişince, değişme birdenbire ani ve süreksiz hale döner. İp önceleri uzamaktayken şimdi kopar. Kristal şekil erir ve moleküller birbirinden uzağa kayar. Bunlar, katı cisimlerin hiçbir niteliğinden çıkarılması mümkün olmayan yasalara, akışkan cisimlerin yasalarına riayet ederler. Atomun ortalama enerjisi hemen hemen değişmemiş, fakat malzeme –şimdi bir sıvı, bir mıknatıs ya da bir süperiletken haline gelmiş– yepyeni bir âleme dahil olmuştur.

Büyük ölçekli olayları açıklamak için gayet yeterli olan Newton dinamiği, atomik boyutlarda işlemez. Gerçekten, klasik mekanik, yüksek hızlarla ve atomaltı düzeyde gerçekleşen süreçlerle ilgili olmayan birçok işlem için hâlâ geçerlidir. Bilimde nitel bir sıçramayı temsil eden kuantum mekaniği ile bir başka bölümde ayrıntılı olarak ilgileneceğiz. Onun klasik mekanikle ilişkisi, basit matematikle yüksek matematiğin ilişkisine, diyalektikle biçimsel mantığın ilişkisine benzer. Radyoaktif dönüşüm, maddenin enerjiye dönüşümü gibi klasik mekaniğin açıklayamadığı olguları açıklayabilen kuantum mekaniği, daha önce çözülemeyen sorunları çözmeye muktedir teorik kimya örneğinde olduğu gibi, yeni bilim dallarının oluşmasına yol açtı. Metallerin mıknatıslık özelliğine ilişkin teori, elektriğin metaller içindeki akışıyla ilgili parlak buluşları olanaklı hale getiren temel bir dönüşüm geçirdi. Yeni bakış açısı bir kez kabul edildikten sonra, bir dizi teorik güçlük bertaraf edilmesine rağmen, sonuçları tam da geleneksel düşünüş tarzıyla ve biçimsel mantık yasalarıyla kafa kafaya tokuştuğu için, uzun zaman inatçı bir direnişle karşılaştı.

Modern fizik, nicelik ve nitelik yasasıyla başlayarak, diyalektiğin yasaları için zengin örnekler sunmaktadır. Elektromanyetik dalganın farklı türleri ve bunların frekansları (yani titreşim hızları) arasındaki ilişkiyi alalım örneğin. Engels’in de çok ilgilendiği Maxwell’in çalışması, elektromanyetik dalgaların ve ışık dalgalarının aynı türden olduğunu gösterdi. Daha sonra kuantum mekaniği durumun çok daha karmaşık ve çelişkili olduğunu göstermesine rağmen, düşük frekanslarda dalga teorisi geçerliliğini korumaktadır.

Farklı dalgaların özellikleri saniyedeki salınım sayısıyla belirlenmektedir. Fark, titreşim hızlarını ifade eden dalga frekanslarında, dolayısıyla saniyedeki titreşim sayısındadır. Bu da demektir ki, nicel değişimler farklı türden dalga sinyallerine yol açmaktadır. Renklerin diline tercüme ettiğimizde, kırmızı ışık düşük frekanslı ışık dalgalarını temsil etmektedir. Titreşim arttırılırsa renk portakal sarısına, daha sonra mora döner, sonra da görünmez mor ötesi ve X ışınları ve son olarak gama ışınları bölgesine geçilir. Eğer alt uçta süreci tersine işletirsek, kızıl ötesi ve ısı ışınlarından radyo dalgalarına doğru ilerleriz. O halde, yüksek ya da düşük frekansa bağlı olarak, aynı olgu kendisini farklı biçimlerde dışavurmaktadır. Nicelik niteliğe dönüşmektedir.

Elektromanyetik Spektrum

Frekans (titreşim/sn) Dalga Türü Kaba davranış özelliği
102 elektrik sinyali alan
5 x 105 – 106 radyo yayını dalga
108 FM-TV dalga
1010 radar dalga
5 x 1014-1015 ışık dalga
1018 X-ışınları parçacık
1021 y-ışınları,nükleer parçacık
1024 y-ışınları,”yapay” parçacık
1027 y-ışınları,kozmik ışınlarda parçacık

Kaynak: R. P. Feynman, Lectures on Physics, 2. bölüm, s. 7, Tablo 2-1.

Bir yorum :

  1. […] “Faz geçişi” ibaresi ne eksik ne fazla nitel bir sıçramadır. Benzer süreçler, hava durumu, DNA molekülleri* ve zihnin kendisinde de görülebilir. Bu sıvı olma niteliği, bizim günlük deneyimimiz temelinde gayet iyi bilinir. Fizikte de sıvıların davranışı iyi anlaşılmıştır ve bir dereceye kadar mükemmelen öngörülebilmektedir. Akışkanların (gazlar ve sıvılar) hareket yasaları, iyi tanımlanmış ve öngörülebilir olan pürüzsüz laminer akış ile en iyi durumda yaklaşık olarak ifade edilebilen türbülanslı akış arasında açık biçimde ayrım yapar. Bir nehir rıhtımı etrafındaki suyun akışı, şayet hareket yavaşsa, normal akışkan denklemlerinden hassas biçimde öngörülebilir. Akış hızını arttırarak anafor ve girdaplara sebep olsak bile suyun davranışını öngörmek hâlâ mümkündür. Ama hız belirli bir noktanın ötesinde arttırılacak olursa, anaforların ne zaman oluşacağını öngörmek ya da suyun davranışı hakkında gerçekten herhangi bir şey söylemek imkânsız hale gelecektir. Suyun davranışı kaotik olmuştur. […]

Bir Cevap Yazın

E-posta hesabınız yayımlanmayacak. Abonelik için e-posta yazmalısınız. Yorumda html etiketleri kullanabilirsiniz.

Gönderen: sonsuz -->

Kategori: Bilim - Etiketler:, , , , ,