Veri madenciliği

Basit bir tanım yapmak gerekir ise veri madenciliği, büyük ölçekli veriler arasından bilgiye ulaşma, bilgiyi madenleme işidir. Ya da bir anlamda büyük veri yığınları içerisinden gelecek ile ilgili tahminde bulunabilmemizi sağlayabilecek bağıntıların bilgisayar programı kullanarak aranmasıdır. Veri madenciliği deyimi yanlış kullanılan bir deyim olabileceğinden buna eş değer başka kullanımlar da literatüre geçmiştir. Veritabanlarında bilgi madenciliği (knowledge mining from databases), Bilgi çıkarımı(knowledge extraction), data/pattern anaysis (veri ve örüntü analizi), veri arkeolojisi gibi.

Bunların arasındaki en popüler kullanım Veritabanlarında Bilgi Keşfi (VBK – Knowledge Discovery From Databases – KDD) ‘dir. Alternatif olarak veri madenciliği aslında bilgi keşfi sürecinin bir parçası şeklinde kabul görmektedir. Bu adımlar:

1- Veri Temizleme (gürültülü ve tutarsız verileri çıkarmak)
2- Veri Bütünleştirme (birçok veri kaynağını birleştirebilmek)
3- Veri Seçme (Yapılacak olan analiz ile ilgili olan verileri belirlemek )
4- Veri Dönüşümü (Verinin veri madenciliği tekniğinden kullanılabilecek hale dönüşümünü gerçekleştirmek)
5- Veri Madenciliği (Veri örüntülerini yakalayabilmek için akıllı metotları uygulamak)
6- Örüntü Değerlendirme (Bazı ölçümlere göre elde edilmiş bilgiyi temsil eden ilginç örüntüleri tanımlamak)
7- Bilgi Sunumu (Madenciliği yapılmış olan elde edilmiş bilginin kullanıcıya sunumunu gerçekleştirmek),

Veri madenciliği adımı, kullanıcı ve bilgi tabanı ile etkileşim halindedir. İlginç örüntüler kullanıcıya gösterilir, ve bunun ötesinde istenir ise bilgi tabnına da kaydedilebilir. Buna göre, veri madenciliği işlemi, gizli kalmış örüntüler bulunana kadar devam eder.

Bir veri madenciliği sistemi, aşağıdaki temel bileşenlere sahiptir: ·Veritabanı, veri ambarı ve diğer depolama teknikleri ·Veritabanı ya da veri ambarı Sunucusu ·Bilgi Tabanı ·Veri Madenciliği Motoru ·Örüntü Değerlendirme ·Kullanıcı Arayüzü

Veri madenciliği, eldeki verilerden üstü kapalı, çok net olmayan, önceden bilinmeyen ancak potansiyel olarak kullanışlı bilginin çıkarılmasıdır. Bu da; kümeleme, veri özetleme, değişikliklerin analizi, sapmaların tespiti gibi belirli sayıda teknik yaklaşımları içerir.

Başka bir deyişle, veri madenciliği, verilerin içerisindeki desenlerin, ilişkilerin, değişimlerin, düzensizliklerin, kuralların ve istatistiksel olarak önemli olan yapıların yarı otomatik olarak keşfedilmesidir.

Temel olarak veri madenciliği, veri setleri arasındaki desenlerin ya da düzenin, verinin analizi ve yazılım tekniklerinin kullanılması ile ilgilidir. Veriler arasındaki ilişkiyi, kuralları ve özellikleri belirlemekten bilgisayar sorumludur. Amaç, daha önceden fark edilmemiş veri desenlerini tespit edebilmektir.

Veri madenciliğini istatistiksel bir yöntemler serisi olarak görmek mümkün olabilir. Ancak veri madenciliği, geleneksel istatistikten birkaç yönde farklılık gösterir. Veri madenciliğinde amaç, kolaylıkla mantıksal kurallara ya da görsel sunumlara çevrilebilecek nitel modellerin çıkarılmasıdır. Bu bağlamda, veri madenciliği insan merkezlidir ve bazen insan – bilgisayar arayüzü birleştirilir.

Veri madenciliği sahası, istatistik, makine bilgisi, veritabanları ve yüksek performanslı işlem gibi temelleri de içerir.

Veri madenciliği konusunda bahsi geçen geniş verideki geniş kelimesi, tek bir iş istasyonunun belleğine sığamayacak kadar büyük veri kümelerini ifade etmektedir. Yüksek hacimli veri ise, tek bir iş istasyonundaki ya da bir grup iş istasyonundaki disklere sığamayacak kadar fazla veri anlamındadır. Dağıtık veri ise, farklı coğrafi konumlarda bulunan verileri anlatır.
(daha&helliip;)

Yorum Durumu: Yorum yok --- Kategori: Bilim, Denemeler --- Etiketler:, , , , , ---

Yapay Zeka

yapay-zeka-1

Temel Kavramlar

Teknolojide son yıllarda ve hatta son günlerde yaşanan hızlı gelişim, kendisini yönetim bilimleri alanında da hissettirmektedir. Bu teknolojik gelişime paralel bir şekilde yönetim bilimi teknikleri de gelişme göstermekte ve yönetim açısından değişik alanlarda kolaylıklar sağlanmaktadır. Özellikle bilgisayar bilimleri alanında yaşanmakta olan baş döndürücü gelişme ister istemez bilgisayar tabanlı sistemlerle çalışan kişi ve kuruluşları da etkilemekte ve gelişime ayak uydurmayı zorunlu kılmaktadır. Haberleşme ve iletişim alanındaki gelişmeler, ülkeler arası kurulan iletişim ağları (İnternet) dünyayı büyük bir köy haline getirmiştir. Dünyanın herhangi bir yerinde üretilen bilginin sayısal hale getirilerek bilgisayar ortamında saklanması, o bilgiye dünyanın herhangi bir yerinden çok kısa sürede erişimi olanaklı kılmaktadır. Bilgi Çağı ve Bilgi Toplumu gibi terimlerin sıklıkla kullanıldığı günümüzde bilginin önemi daha açık bir şekilde ortaya çıkmaktadır. Bilginin önemi arttığı oranda o bilgiye ulaşabilmeyi sağlayan sistemlerin de önemi artmaktadır.

İşletmeler de kendileri için gerekli olan bilgileri temin etmek durumundadır ve yaşanılan ortamdaki hızlı değişim ve hareketlilik doğru bilgiye en kısa sürede ulaşmayı zorunlu kılmaktadır. Çünkü yöneticiler işletmenin faaliyetlerini devam ettirebilmesi için karar almak zorundadırlar ve karar almak için bilgi gereklidir. Bu yüzden işletmelerde, teknolojik gelişmelere paralel olarak bilgisayarlar kullanılmaya başlanmıştır ve her türlü gerekli bilgi bilgisayar ortamında saklanarak istenildiğinde yöneticilere sunulmaktadır. Burada önemli olan bilgilerin toplanması, organize edilmesi ve dağıtılmasıdır. Bir çok organizasyon bilgiyi toplamak, organize etmek ve dağıtmak için bilgisayar destekli bilgi sistemlerini kullanmaktadır. Yönetim bilimleri tabiriyle işletmelerde Yönetim Bilgi sistemi kullanımı yaygınlaşmaktadır. Bunun yanı sıra işletmeler Karar Destek Sistemi ve Uzman Sistem gibi farklı yönetim bilimi tekniklerini kullanmaktadırlar. Şimdi kısaca bu tekniklerden bahsedeceğiz.

(daha&helliip;)

Yorum Durumu: Bir yorum --- Kategori: Bilim --- Etiketler:, , , , , , , , , , , , ---