Karanlık Madde nedir?

Büyük Patlama kendisiyle birlikte, evren üzerine inanılmaz düzeyde bir kavrayışı da getirdi. Ancak bunun yanı sıra, çok ciddi soruları da önümüze koydu. Örneğin Samanyolu gibi galaksilerin nereden geldiği gibi soruları.

Büyük Patlama’nın neden olduğu ateş topu, madde ve ışık parçacıklarının bir karışımıdır. Madde, ışığı etkilemiş olmalıdır. Örneğin madde öbeklere ayrılmış olsaydı, bu durum kendisini Büyük Patlama’dan geriye kalan ışıkta yansıtırdı. Bir diğer ifadeyle, bu ışık gökyüzünün her yerinde aynı olmaz, bazı noktalarda diğer noktalara nazaran daha parlak olurdu. Patlamadan geriye kalan ısı ve ışığın tüm gökyüzüne eşit dağılmış olduğu gerçeği, ateş topundaki maddenin aşırı düzenli bir şekilde dağılmış olduğu anlamına gelmektedir. Fakat tümüyle eşit bir şekilde dağılmış olamayacağını da biliyoruz. Sonuçta, yıldızlardan oluşan galaksiler, galaksi kümeleri ve aralarındaki büyük uzay boşluğuyla, bugünün evreni madde öbeklerinden oluşmaktadır. Dolayısıyla bir noktada, evrendeki madde, uzayda eşit bir şekilde dağılmaktan çıkarak kümelenmeye başlamıştır. Ve bu sürecin başlangıcı, kozmik ardalan ışımasında görülebilir olmalıdır.

Gerçekten de, 1992 yılında, Büyük Patlama’ dan geriye kalan ışığın parlaklığındaki çok ufak farklar, NASA’nın COBE uydusu tarafından saptandı. Bu kozmik dalgalar (hatta araştırmaya katılan bilim adamlarından biri, bu dalgaları “Tanrı’nın yüzü”ne benzetecek kadar canlı bir hayal gücüne sahipti), Büyük Patlama’nın 450.000 yıl sonrasında, evrenin bazı kısımlarının diğer kısımlarına nazaran biraz daha yoğun olduğunu gösterdi. Ve fark edilen bu madde öbeklerinin, yani yapının tohumlarının, bugün evrende gördüğümüz galaksi kümelerini oluşturacak şekilde büyümüş olması gerektiği düşünüldü. Ancak burada bir sorun söz konusu.

Madde öbekleri, kütle çekimi nedeniyle daha büyük öbekler meydana getirecek şekilde büyür. Temel olarak, bir kesim diğer bir kesme göre daha fazla maddeye sahipse, daha büyük olan kütle çekimiyle komşusu olan kesimden madde çalmaya devam eder. Bu bağlamda, tıpkı günümüz dünyasında zenginlerin zenginleştikçe fakirlerin daha da fakirleşmesi gibi, evrenin yoğun kesimleri daha da yoğunlaşmayı sürdürmüş ve en sonunda etrafımızdaki galaksileri oluşturmuşlardır. Ancak teorisyenlerin aklına takılan problem, kütle çekim kuvveti için 13,7 milyar yılın, COBE uydusu tarafından saptanan küçük madde öbeklerinden galaksilerin oluşmasına izin verecek kadar uzun bir süre olmamasıydı. Bunun tek yolu, evrende, yıldızlara bağlı görünebilir durumdaki maddeden çok daha fazla madde bulunması olasılığıydı.

Aslına bakılacak olursa, çok daha yakınımızda da kayıp maddeye dair güçlü göstergeler bulunuyor. Samanyolu gibi sarmal galaksiler yıldızlardan oluşan dev anaforlardır. Ancak yıldızların, galaksilerin merkezi etrafında aşırı hızlı bir şekilde döndüğü anlaşılmıştır. Bu yıldızların en sonunda yörüngelerinden fırlayarak galaksiler arası uzaya uçmaları gerekirdi, tıpkı aşırı hızlanan bir atlıkarıncadan fırlayıp düşmeniz gibi. Astronomların getirdiği olağandışı açıklama ise Samanyolu gibi galaksilerin yıldızlarda görünenden 10 kat daha fazla madde içerdiği oldu ve bu görünmez durumdaki maddeye “kara madde” dendi. Kimse kara maddenin ne olduğunu bilmiyor. Tek bildiğimiz, kara maddenin getirdiği ilave kütleçekiminin yıldızları yörüngelerinde tutarak galaksiler arası uzaya fırlamalarını engellediği.

Eğer evren, normal maddenin 10 katı kadar kara madde içeriyorsa, bu kara maddenin getireceği ilave kütleçekimi, 13,7 milyar yılda, COBE tarafından saptanan madde öbeklerinin günümüzün galaksilerine dönüşmesi için yeterlidir. Böylece Büyük Patlama fikri de korunmuş olur. Bunun bedeli ise nereden geldiği hiç kimse tarafından bilinmeyen çok fazla kara maddenin resme eklenmiş olmasıdır. Hiç kimse tarafından bilinmeyen mi? Neredeyse, hiç kimse tarafından desek daha doğru olacak sanırım. Çoğunlukla Zararsız (Mostly Harmless) kitabında Douglas Adams’ın söylediklerine kulak verelim: “Uzun bir zaman boyunca, evrenin şu kayıp maddesinin nerede olabileceğine dair çok fazla spekülasyon ve tartışma çıktı. Galaksinin her noktasında, belli başlı tüm üniversitelerin bilim kürsüleri, uzaklardaki galaksilerin kalbini, ardından da tüm evrenin merkezini ve en uç noktalarını araştırmak için, sürekli olarak daha çok ve daha karmaşık teçhizatlar satın alıyordu. Fakat en sonunda sondaj tamamlandığında, kayıp maddenin, teçhizatların içinde geldiği paketleme malzemesinden başka bir şey olmadığı ortaya çıktı!”

Kütleçekimi Hakkındaki Tuhaflık

Söz konusu bağlantıyı anlamak için, kütleçekiminin tuhaf bir özelliğini göz önüne almamız gerekiyor. Tüm cisimler, kütlelerinden bağımsız olarak, aynı hızda yere düşer. Örneğin bir yerfıstığı, bir insanla aynı sürede hızlanır. Bu davranış ilk kez olarak 17. yüzyıl İtalyan bilim adamı Galileo tarafından fark edilmişti. Galileo’nun, kütleçekiminin bu özelliğini gözlemlemek için, yanına biri hafif diğeri ağır iki cisim alarak, her ikisini de aynı anda Pisa Kulesi’nden attığı söylenir. İki cisim de yere aynı anda iner.

Kütleçekiminin bu özelliğinin dünya üzerinde her zaman aynı şekilde gözükmemesinin nedeni, hava direncinin farklı ağırlıktaki cisimler üzerinde farklı etkilere yol açıyor olmasından başka bir şey değildir. Bununla birlikte, Galileo’nun deneyi cisimlerin düşüş süresini değiştiren hava direncinin olmadığı bir ortamda mesela ayda yinelenebilir. 1972 yılında, Apollo 15 komutanı Dave Scott bir çekiç ve tüyü aynı anda yere bıraktı. Ve beklendiği üzere, her ikisi de ay zeminine tam olarak aynı anda indi.

Bu olayın tuhaf yanı ise genellikle cismin bir güce karşılık nasıl hareket edeceğinin, cismin kütlesine bağlı olduğudur. İşleri karıştıracak sürtünme unsurunun bulunmadığı, buz pateni pisti gibi bir zemin üzerinde, tahta bir tabure ve dolu bir buzdolabı düşünelim. Ve iki kişinin buzdolabı ve tabureyi tam olarak aynı ölçüde bir kuvvet uygulayarak ittiğini. Buzdolabına göre daha az kütleye sahip olan tabure açık bir şekilde daha kolay itilebilecek ve daha kısa sürede hız kazanacaktır.

Peki ama, tabure ve buzdolabı kütleçekim kuvveti altında nasıl davranır? Her ikisini de 10 katlı bir apartmanın tepesinden aşağı bıraktığımızı düşünelim. Bu durumda, Galileo’nun da öngöreceği gibi, tabure buzdolabına nazaran daha kısa sürede hız kazanamaz. Aralarındaki ciddi boyutlardaki kütle farkına rağmen, tabure de buzdolabı da zemine doğru düşerken aynı oranlarda hız kazanır.

Artık kütleçekimi hakkındaki tuhaf durumun ne olduğunu anlamış bulunuyoruz. Büyük bir kütle, küçük kütleli bir cisme nazaran, daha büyük bir kütleçekim kuvveti hisseder ve bu kuvvet cismin kütlesiyle doğru orantılıdır. Yani büyük kütle küçük kütleyle tam olarak aynı oranlarda hız kazanır. Peki ama, kütleçekimi, kuvvet uygulayacağı cisme göre kendisini nasıl ayarlamaktadır? Kütleçekiminin bunu inanılamayacak ölçüde basit ve doğal bir şekilde gerçekleştirdiğini fark etmek için gerekli olan, Einstein’ın dehası oldu. Dahası bu yolun, kütleçekimini kavrayışımız üzerinde de önemli sonuçları olduğu anlaşıldı.

Bozonlar Neden Bir Arada Olmaktan Hoşlanır

İki bozon parçacığının küçük bir alanda uçtuğunu düşünelim. Biri güzergahı üzerinde bir engelle karşılaşarak, diğeri de bir başka engele çarparak seksinler. Engellerin ne olduğunun bir önemi yok, çekirdek ya da herhangi bir başka şey olabilir. Önemli olan hangi yönde sekecekleridir. Ve bu yön her ikisi için de aynıdır.

Eğer ki iki bozon farklı türden parçacıklarsa, aralarında bir girişim yaşanamaz. Bu nedenle de, dedektörün seken iki parçacık saptaması olasılığı, ilk dalganın yüksekliğinin karesi artı ikinci dalganın yüksekliğinin karesidir. Şimdi, olan şu ki -ve bu noktanın doğruluğuna güvenmek durumundayız- iki olasılığın az çok aynı olduğu ortaya çıkmaktadır. Dolayısıyla genel olasılık da, kendi başlarına gerçekleşen her bir olayın olasılıklarının iki katıdır.

Şimdi, iki bozonun özdeş parçacıklar olduğunu varsayalım. Bu durumda, iki olasılık ayırt edilemez. Ve ayırt edilemez olduklarından ötürü de, bu olasılıklarla bağlantılı dalgalar birbirleriyle girişimde bulunabilir.

Bu sayı, bozonların özdeş olmadığı durumun iki katını vermektedir. Diğer bir deyişle, iki bozon özdeş olduğunda, aynı yönde sekmeye, farklı oldukları duruma nazaran iki kat daha fazla meyilli olmaktadır. Ya da şu şekilde ortaya koyalım: Bir bozonun belli bir yönde sekmesi, bir başka bozon da aynı yönde sekmişse, iki kat daha olasıdır.

Bozonlar arttıkça bu etki çok daha önem kazanır. Ortada n tane bozon varsa, bir tane daha parçacığın aynı yönde sekme olasılığı, başka hiçbir bozon olmadığı durumdan n kat daha büyüktür. Burada sürü psikolojisinden bahsediyoruz! Var olan diğer bozonların bir şey yapıyor olması, bu bozonlara eklenecek bir yenisinin de aynı şeyi yapacak olması olasılığını ciddi ölçüde arttırmaktadır.

Bozonların söz konusu girişkenliğinin, bizim için çok önemli sonuçları olduğu ortaya çıkmıştır: Örneğin ışığın yayılmasının pratik uygulamaları açısından.

Neden Atomların Tümü Aynı Değil?

Bir kilise orgu içinde hapsolmuş ses dalgalarının ancak kısıtlanmış yollardan titreşim sağlayabildiğini hatırlayın. Aynı durum, atomun içine hapsolmuş bir elektronla bağlantılı dalgalar için de geçerlidir. Her bir farklı titreşim, bir elektronun, atomun merkezindeki çekirdeğe göre belirli bir mesafede bulunan olası bir yörüngesine ve belirli bir enerji düzeyine denk gelmektedir (elbette ki, elektron ya da diğer mikroskobik parçacıklar için yüzde 100 kesinlikte bir rota olmadığından, söz konusu yörünge bir elektronu bulmak için en olası yer olarak kabul edilir).

Fizikçiler ve kimyagerler yörüngeleri numaralandırmaktadır. Taban durumu (ground state) olarak da bilinen en içteki yörünge 1, ardı sıra gelen yörüngeler ise içten dışa doğru 2, 3, 4 … şeklinde numaralandırılmıştır. Bu kuantum numaralarının mevcudiyeti, mikroskobik dünyada (söz konusu olan elektron yörüngeleri olduğunda bile) her şeyin nasıl ara değerler olmaksızın, ayrık adımlarla meydana geldiğini ortaya koymaktadır.

Elektron bir yörüngeden, çekirdeğe daha yakın olan bir başka yörüngeye “sıçradığında,” atom enerji kaybeder ve bu enerji dışa bir ışık fotonu olarak yayılır. Bu fotonun enerjisi tam olarak, iki yörünge arasındaki enerji farkına eşittir. Bunun zıt doğrultusunda bir atlamada ise atom, iki yörünge arasındaki enerji farkına eş düzeyde enerji taşıyan bir fotonu soğurur. Bu durumda, elektron bir yörüngeden çekirdeğe daha uzak olan bir başka yörüngeye sıçrar.

Devamını oku “Neden Atomların Tümü Aynı Değil?”

Parçacıkların İki Kabilesi

Çekirdeklerin farklı olduğu durumu (karbon ve helyum) hatırlayın ve iki olası çarpışma olayını yeniden değerlendirin. Birinde, çekirdekler birbirlerini sıyırarak geçerken, diğerinde kafa kafaya çarpışarak geldikleri yönde geriye sekerler. Bunun anlamı, 9:00 yönünden gelen çekirdek için, 4:00 ve 10:00 yönlerine yönelmesiyle bağlantılı iki dalganın olmasıdır.

Burada anlaşılması gereken temel nokta, bir olayın olasılığının, bu olayla bağlantılı dalganın yüksekliğiyle değil, dalganın yüksekliğinin karesiyle bağlantılı olmasıdır. Dolayısıyla 4:00 yönündeki olayın olasılığı 4:00; 10:00 yönündeki olayın olasılığı ise 10:00 yönündeki dalga yüksekliğinin karesidir. İşte tam da burada, yukarıda bahsettiğimiz ince nokta devreye giriyor.

10:00 yönünde uçan çekirdekle bağlantılı dalganın ters döndüğünü varsayalım. Bu durumda dalganın dip noktaları tepe, tepe noktaları ise dip noktaları olacaktır.

Devamını oku “Parçacıkların İki Kabilesi”