Görelilik ve Kara Delikler

karadelikNewton’dan farklı olarak Einstein’a göre, kütleçekim zamanı etkiler, çünkü ışığı etkiler. Eğer bir kara deliğin kenarında hareketsiz tutulan bir ışık parçacığı hayal edilirse, bu parçacık ne ilerler ne de geriler, ne enerji kaybeder ne de kazanır, yalnızca belirsiz bir şekilde askıda kalır. Böyle bir durumda, “zamanın kıpırdamadan durduğunu” ileri sürmek mümkündür. Kara delikleri ve onun niteliklerini savunan görelilikçilerin iddiası budur. Sözün kısası, kastedilen, eğer tüm hareket sona erdirilseydi, ne durum ne de konumda herhangi bir değişimin olmayacağı ve bu nedenle de kelimenin herhangi bir anlamında zaman diye bir şeyin bulunmayacağıdır. Kara deliğin kenarında varolduğu farz edilen durum budur. Ne var ki bu, son derece spekülatif ve mistik bir yorum olarak görünmektedir.

Tüm maddeler sürekli bir değişim ve hareket halindedirler ve bu nedenle burada söylenen şey, eğer madde ve hareket yok edilirse, zamanın da yok olacağından başka bir şey değildir, ki bu tam bir totolojidir. Bu şunu söylemekten farksızdır; eğer madde yoksa madde yoktur, ya da eğer zaman yoksa zaman yoktur. Çünkü her iki ifade de tıpatıp aynı şeyi anlatır. Tuhaftır ama, görelilik teorisinde zamanın ve uzayın ne olduğuna dair bir tanım aramak boşunadır. Einstein şüphesiz bunu izah edilmesi zor bir şey olarak görmüştü. Ne var ki, kendi geometrisi ile klasik Öklid geometrisi arasındaki farkı izah ederken bu noktaya oldukça yaklaşmıştı. İçinde uzayın eğrilmediği bir evren hayal edilebileceğini, ama bunun bütünüyle maddeden yoksun olacağını söylemişti. Bu tastamam doğru bir yöne işaret eder. Kara delikler hakkındaki tüm yaygaralardan sonra, Einstein tarafından bu konuya hiç değinilmediğini keşfettiğinizde şaşırabilirsiniz. O, esasen çok karmaşık bir matematiğe dayalı dikkatli bir yaklaşıma bel bağlamış ve gözlem ve deneyle doğrulanabilecek öngörülerde bulunmuştu. Kara delik fiziği, açıkça saptanmış ampirik verilerin yokluğunda, son derece spekülatif bir karaktere sahiptir.
Devamını oku

Yorum Durumu: 2 yorum --- Kategori: Bilim, Felsefe --- Etiketler:, , , , , , , , , , ---

Uzam ve Zaman

Zaman ve Uzam Hakkında
Doç. Dr. Haluk Berkmen

Bilimde kullanılan en temel kavramlardan biri zaman diğeri mekân, yani uzamdır. Bu iki kavram olmasa ne madde ne de etkileşim tanımlanabilir. Fakat her ikisi de bizim hem dışımızda hem içimizdedir. Zamanın sürekli bir akış içinde olduğunu varsayıyoruz. Günlerin ve mevsimlerin geçişi bizde zamanın da geçmişten geleceğe doğru aktığı kanısını uyandırıyor. Makro boyutta bu böyle; fakat mikro boyutta böyle mi? Mikro boyutta, Kuantum kuramı zamanın tersinir olduğunu söylüyor. Yani zaman hem geçmişten geleceğe hem de gelecekten geçmişe doğru akmaktadır.

İmmanuel Kant (1724-1804) zamanın ‘ a p r i o r i’ (doğumla verili) yani sonradan edinilmeyen, her insanda doğal olarak bulunan saf bir özellik veya yeti olduğunu ileri sürdü. İnsan bu yetisini kullanarak doğayı yorumlar ve onda bir düzen, bir birlik olduğu sonucuna ulaşır. Kant’ın bu yorumuna ben tin-beden ilişkisi olarak bakmaktayım. Tin insanın psikososyal yapısı ve beden de duyuların tümü olmaktadır. İnsan bu iki farklı ve birbirlerinden bağımsız olan özelliğin aritmetik değil, ‘ vektöryel ’ toplamıdır. Alttaki çizim bu vektöryel toplamı gösteriyor. Vektör kavramı için 36 sayılı Sanalın Gerçekliği başlıklı yazıma bakınız.

Şekilde insan tin-beden bütünlüğü iken nesnelerin de dalga-parçacık bütünlüğü olduğu görülüyor. İki dik eksen O (orijin) yani kaynak veya sıfır noktasında birleşiyor. Bu sıfır kaynak noktasına cansız nesneler söz konusu olduğunda ‘töz’, insan söz konusu olduğunda ‘ruh’ adı verilmiştir. İnsanın nesneleri kavrayabilmesi ne sadece tiniyle (aklıyla) ne de sadece bedeniyle (duyularıyla) olmakta, her ikisinin ortak noktası olan ruhu ile olmaktadır.
Devamını oku

Yorum Durumu: Yorum yok --- Kategori: Bilim, Denemeler, Felsefe --- Etiketler:, , , , , , ---

Görelilik Üzerine İdealist Yorumlar

isik-hizi“Işıl adında genç bir kız vardı
Hızı ışığı aşan;
Bir gün yola çıktı
Göreli bir biçimde
Ve önceki gece evine döndü.”

(A. Buller, Punch, 19 Aralık 1923)

Kuantum mekaniği gibi, görelilik de bilime mistisizmi bulaştırmak isteyenlerce ele geçirildi.

“Görelilik”, evreni gerçekte bilemeyeceğimiz anlamında ele alınıyor. J. D. Bernal’ın açıkladığı gibi: Ne var ki, Einstein’ın çalışmalarının uygulanabileceği dar uzmanlık alanlarının dışındaki etkisinin genel mistifikasyonun bir parçası olduğu da aynı ölçüde doğrudur. Onun çalışmaları, Birinci Dünya Savaşından sonra hayal kırıklığına uğramış entelektüeller tarafından, gerçeklerle yüzleşmeyi reddetmekte kendilerine yardımcı olması amacıyla hevesle sahiplenildi. Yalnızca “görelilik” sözcüğünü kullanma ve “her şey görelidir” ya da “ne kastettiğinize bağlı” deme ihtiyacındaydılar. Einstein’ın düşüncelerinin tümüyle yanlış bir yorumudur bu. Aslında, tam da “görelilik” sözcüğü yanlış bir kavramdır. Einstein’ın kendisi değişmezlik teorisi adını tercih etmişti ve bu ad kastettiği düşünceyi –görelilik teorisinin vulger kavranışının tam zıddını– çok daha iyi ifade etmekteydi. Einstein’e göre, “her şey görelidir” demek kesinlikle doğru değildir. Daha en başta, durgun enerji (yani madde ve enerjinin birliği) görelilik teorisinin mutlaklarından biridir. Bir diğer mutlaklık da ışık hızının oluşturduğu sınırdır. Bir düşüncenin en az bir başkası kadar doğru olduğunu ve “bütünüyle ona nasıl baktığınıza bağlı” olduğunu ifade eden gerçekliğin keyfi ve öznel yorumundan çok farklı olarak, Einstein “bağıl hareketlerin ya da kütleçekimin oluşturduğu göze batan kafa karışıklığına, yanılsamalara ve çelişkilere rağmen neyin «mutlak» ve güvenilir olduğunu keşfetmişti.”
Devamını oku

Yorum Durumu: Yorum yok --- Kategori: Bilim, Felsefe --- Etiketler:, , , , ---

Görelilik Paradoksu

zaman-daliÖzel görelilik teorisi bilimin en büyük başarılarından biriydi. Evrene bakış tarzımızı o denli devrimcileştirmişti ki, ancak dünyanın yuvarlak olduğunun keşfedilmesiyle karşılaştırılabilirdi. Göreliliğin, kısmen yerine geçtiği eski Newton yasalarından çok daha kesin bir ölçüm yöntemi inşa etmesi, devasa ileri adımlar atılmasını da olanaklı kıldı. Ne var ki, zamana ilişkin felsefi sorun Einstein’ın görelilik teorisiyle ortadan kaldırılmış değildir. Eğer yeni bir şey varsa, o da bu sorunun eskisinden çok daha keskin hale gelmesidir. Daha önce de açıkladığımız gibi, zamanın ölçülmesinde öznel ve hatta keyfi bir yön olduğu açıktır. Ancak bu, zamanın salt öznel bir şey olduğu sonucuna çıkmaz. Einstein’ın tüm yaşamı, doğanın nesnel yasalarının peşinden gitmeye adanmıştı. Sorun, zaman da dahil olmak üzere doğa yasalarının, herkes için, nerede olduklarından ve hangi hızda hareket ettiklerinden bağımsız olarak, aynı olup olmadığıdır. Bu sorunda, Einstein bocalamıştır. Bazen bunu kabul eder gözükmüş, bazen de reddetmiştir. Doğanın nesnel süreçleri, kendilerinin gözleniyor ya da gözlenmiyor oluşlarınca belirlenmez. Kendilerinde ve kendileri için vardırlar. Evren ve bu nedenle de zaman, onları gözlemleyecek insanoğlu olmadan önce de vardı ve onlarla kendini meşgul edecek insan kalmadığında da varolmayı sürdürecektir. Maddi evren, ölümsüz, sonsuz ve sürekli değişim halindedir. Bununla birlikte, insan aklının evreni kavrayabilmesi, onun bizim için bir gerçeklik haline gelebilmesi için, onu parçalı kavramların diline çevirmek, analiz etmek ve ölçmek gerekir. Evreni gözleyiş tarzımız (gözlenmekte olan şeye müdahale edecek fiziksel süreçler içermediği sürece) onu değiştirmez. Ancak onun bize görünüş tarzı gerçekten de değişebilir. Bizim açımızdan, dünya durgun gözükür. Fakat dünyamızdan uzaklaşmakta olan bir astronot açısından, dünya, yanından hızla fırlayıp geçen bir şey olarak görünür. Çok ince bir espri anlayışına sahip görünen Einstein’ın, bir keresinde şaşkın bir bilet kontrol memuruna, “Oxford bu trene kaçta varıyor?” diye sorduğu söylenir.
Devamını oku

Yorum Durumu: Bir yorum --- Kategori: Bilim, Felsefe --- Etiketler:, , , , ---

Şeyler Arasındaki İlişkiler

bakis-acisiBirçok kavram bütünüyle göreli bir karakterdedir. Meselâ, birine, bir evin yolun solunda mı yoksa sağında mı olduğu sorulduğunda, bu soruyu yanıtlamak imkânsızdır. Bu, kişinin eve göre hangi yönde ilerlediğine bağlıdır. Diğer taraftan, bir nehrin sağ kıyısından bahsetmek mümkündür, çünkü nehrin akışı nehrin yönünü belirler. Benzer şekilde, arabaların yolun sağından gittiğini (en azından Türkiye’de) söyleyebiliriz, çünkü arabanın hareketi yoldaki iki olası yönden birindedir. Ne var ki tüm bu örneklerde, “sol” ve “sağ” kavramlarının, ancak kendisiyle tanımlandıkları yön gösterildikten sonra bir anlam kazanmalarından ötürü, göreli oldukları görülür. Aynı şekilde, “gece mi gündüz mü?” diye sorduğumuzda yanıt nerede olduğumuza bağlıdır. Londra’da gündüzdür ama Avustralya’da gece. Gece ve gündüz göreli kavramlardır, yerküre üzerindeki konumumuz tarafından belirlenirler. Bir cisim, verili bir gözlem noktasından uzaklığına göre daha büyük ya da daha küçük görülecektir. “Yukarı” ve “aşağı” da, dünyanın düz değil de yuvarlak olduğu keşfedildikten sonra değişen göreli kavramlardır. Bugün bile, “sağduyunun”, insanların Avustralya’da “başaşağı” yürüyebildiklerini kabul etmesi güç bir şeydir. Yine de, diklik kavramının mutlak değil göreli olduğunu kavradığımızda ortada bir çelişki yoktur.
Devamını oku

Yorum Durumu: Yorum yok --- Kategori: Bilim, Felsefe --- Etiketler:, , , , , ---

Görelilik

gorelilikAlbert Einstein hiç şüphesiz zamanımızın en büyük dahilerinden biriydi. Yirmi birinci ve otuz sekizinci doğum günleri arasında, bilimde birçok düzeyde büyük yankılar uyandıran bir devrimi tamamladı. İki büyük buluşu, Özel Görelilik Teorisi (1905) ve Genel Görelilik Teorisi (1915) idi. Özel görelilik yüksek hızlarla ilgilidir, genel görelilik ise kütleçekimle. Einstein’ın teorileri, son derece soyut karakterde olmalarına karşın, nihayetinde deneylerden türetilmişti ve başarılı pratik uygulamalara yol açmıştı, ki bu uygulamalar onun görüşlerinin doğruluğunu defalarca onayladılar. Einstein, 19. yüzyıl fiziğinde içsel bir çelişkiyi açığa vuran ünlü Michelson-Morley deneyinden, “bilim tarihinin en büyük negatif deneyinden” (Bernal) yola çıkmıştı. Bu deneye, ışığın görülen hızının, hareketsiz olduğu varsayılan “eter” içerisinde hareket eden gözlemcinin hızına bağlı olduğunu göstererek elektromanyetik ışık teorisini genelleştirmek üzere girişilmişti. Sonunda, gözlemci hangi doğrultuda hareket ederse etsin, ışığın ölçülen hızlarında hiçbir farklılık bulunamadı. J. J. Thomson daha sonraları, güçlü elektriksel alanlar içinde hareket eden elektronların hızlarının, klasik Newton fiziğinin öngördüğünden daha yavaş olduğunu gösterdi. 19. yüzyıl fiziğindeki bu çelişkiler özel görelilik teorisi tarafından çözüme bağlandı. Eski fizik, radyoaktivite olgusunu açıklamaktan acizdi. Einstein bunu, “eylemsiz” maddenin içine hapsolmuş muazzam miktardaki enerjinin küçük bir kısmının açığa çıkması olarak açıkladı.

Einstein 1905’te İsviçre patent bürosunda bir sekreter olarak çalışırken boş zamanlarında kendi özel görelilik teorisini geliştirdi. Yeni kuantum mekaniğinin keşiflerinden yola çıkarak, ışığın uzayda bir kuantum biçiminde (enerji paketleri olarak) hareket ettiğini gösterdi. Bu yaklaşım, daha önceleri kabul edilmiş ışığın dalga teorisiyle açıkça çelişikti. Aslında Einstein eski ışığın parçacık teorisini bütünüyle farklı bir tarzda yeniden canlandırmıştı. Burada ışık, çelişik bir karaktere sahip, aynı anda hem parçacık hem de bir dalga özelliği gösteren yeni tip bir parçacık olarak görülüyordu. Bu şaşırtıcı teori, spektroskoplar kadar Maxwell denklemlerini de kapsayacak şekilde 19. yüzyıl optiğinin tüm büyük keşiflerinin muhafaza edilmesini mümkün kıldı. Fakat ışığın uzayda hareket edebilmek için, kendine has bir vasıtaya, “eter”e ihtiyaç duyduğu şeklindeki kalıplaşmış eski düşünceyi de yok etti. Özel görelilik, ışığın boşluktaki hızının, ışık kaynağının gözlemciye göre hızı ne olursa olsun, her zaman aynı sabit değerde ölçüleceği kabulünden hareket eder. Dahası, özel görelilik, enerji ve kütlenin aslında eşanlamlı olduklarını ifade eder. Bu, diyalektik materyalizmin temel felsefi postülasının –madde ve enerjinin birbirinden koparılamaz niteliğinin, hareketin (“enerji”) maddenin varoluş tarzı olduğu düşüncesinin– çarpıcı bir doğrulanışıdır.
Devamını oku

Yorum Durumu: 2 yorum --- Kategori: Bilim, Felsefe --- Etiketler:, , , , , , , , ---

Kara Delikleri “Gözlemek”

Kara delik sözünü ilk duyduğumda açıkçası çok korkutucu gelmişti. Aklıma ilk gelen, uzayda çevresindeki her şeyi yutarak gitgide büyüyen dev bir nesneydi. Bu kara delik o kadar büyüyecekti ki kaçınılmaz olarak bir gün Dünya’yı da yutacaktı. Şimdi biliyorum ki bu korkum çok yersiz. Her ne kadar evrende çevresindeki yıldızları yutan kara delikler mevcutsa da, bunların sayısı ve etki alanı çok sınırlı.

En basit tanımıyla kara delikler yüzeyinden ışığın bile kaçamadığı yerçekimi kuvvetine sahip nesneler. Genelde tüm özelliklerini anlatmak için Einstein’ın genel görelilik kuramına ihtiyacımız olsa da, basit özelliklerini anlamak için liseden bildiğimiz Newton kanunları yeterli. Kara deliklerde madde o kadar küçük bir alana hapsediliyor ki, yüzeyinden kaçmak için gereken hız, ışık hızını (saniyede 300,000 km) geçiyor. Sonuç olarak ışık dahi kara delikten kaçamıyor, bükülerek yüzeye geri dönüyor. Öyleyse bir kara delik oluşturmak için gereken, başlangıçtaki kütleyi sıkıştırarak hacmini yeterince küçültmek. Aşağıdaki Tablo bize astronomideki tipik kütlelerin kara delik haline gelmesi için sıkıştırılması gereken büyüklükleri veriyor.

 

Cisim Kütle Yarıçap Kara delik yarıçapı**
Dünya 6 x 1024 kg * 6,400 km 9 mm
Güneş 2 x 1030 kg 700,000 km 3 km
Nötron yıldızı 3-4 x 1030 kg 10 – 15 km 4.5 – 6 km
Samanyolu merkezi 3 milyon güneş kütlesi 9 milyon km
M 87 Galaksi merkezi 3 milyar güneş kütlesi 9 milyar km

* Bilimsel notasyon kullanılmıştır, 1024 = 1,000,000,000,000,000,000,000,000 (birden sonra 24 tane 0)
**Kara deliğe dönüştürmek için verilen kütlenin sıkıştırılması gereken yarıçap (Schwarzchild yarıçapı)

Burada bir önemli nokta kara deliklerin çekim alanı ile ilgili. Kara delikten yeterince uzakta (mesela bir kaç yüz Schwarzchild yarıçapı) maddenin tüm dinamiğini Newton yasaları kullanarak tarif etmek mümkün. Daha açık bir örnek vermek istersek, diyelim ki Güneş bir anda kara deliğe döndü. Dünya, diğer gezegenler, göktaşları, kuyruklu yıldızlar hiç istiflerini bozmadan yörüngelerinde dönmeye devam edecekler. Güneş de kara delik oldu diye gezegenleri yutacak değil. Kısacası kara delikten yeterince uzaktaki cisimler için önemli olan merkezdeki toplam kütle: toplam kütleyi oluşturan cismin bir kara delik ya da başka bir astronomik cisim olması fark etmez. Ama kara delik yakınlarına gelirsek iş değişir. Newton kanunları yetersiz kalmaya başlar, Einstein’ın genel görelilik kuramı ve bükülmüş uzay-zamanda hesaplar yapılmaya başlanır.
Devamını oku

Yorum Durumu: Yorum yok --- Kategori: Bilim --- Etiketler:, , , , , , , , ---