Karanlık madde

karanlik-maddeBüyük Patlama hipotezinin başı her derde girdiğinde, taraftarları onu terk etmek yerine, onu desteklemek için yeni ve daha da keyfi kabullerde bulunarak sadece kale direklerinin yerini değiştirirler. Örneğin, teori evrende belli miktarda maddeyi gerektirmektedir. Eğer evren, modelin öngördüğü gibi 15 milyar yıl önce yaratıldıysa, görünmez “karanlık madde”nin yardımı olmaksızın, gözlemlediğimiz maddenin Samanyolu gibi galaksiler halinde bir araya gelmesi için aslında yeterince zamanı olmayacaktı. Büyük patlama kozmologlarına göre, büyük patlamadan galaksilerin oluşması için evrende, kütleçekim yasası nedeniyle evrenin genişlemesine nihai bir son verecek yeterli miktarda madde olması gerekir. Her uzay metreküpünde yaklaşık olarak on atomluk bir yoğunluk anlamına gelir bu. Gerçekteyse, gözlemlenebilir evrende varolan madde miktarı aşağı yukarı on metreküpte bir atomdur, yani teori tarafından öngörülen miktardan yüz kat daha az.
Devamını oku

Yorum Durumu: Yorum yok --- Kategori: Bilim, Felsefe --- Etiketler: , , , , , ---

“Şişme” Teorisi

Alan Guth

Alan Guth

Bu ve diğer sorunlardan kurtulmak için Amerikalı fizikçi Alan Guth “şişen evren” teorisini geliştirdi. Bu teoriye göre, sıcaklık o denli hızla düşmüştü ki, farklı alanların ayrışması için ya da farklı taneciklerin oluşması için hiç zaman kalmamıştı. Farklılaşma ancak daha sonraları, evren daha da genişlediğinde meydana geldi. Büyük patlamanın en son versiyonu budur. Bu versiyon, büyük patlama anında evrenin, her 10–35 saniyede büyüklüğünü ikiye katladığı üstel bir genişlemeden (bu nedenle “şişme” adı verilir) geçtiğini iddia eder. “Standart model”in daha eski versiyonları tüm evreni bir greyfurt boyutuna sıkıştırılmış olarak tahayyül ederken, Guth daha iyisini yaptı. O, evrenin bir greyfurt gibi başlamadığını, bir hidrojen atomu çekirdeğinden milyarlarca kez daha küçük olabileceğini hesapladı. Bu takdirde, ilk hacminin 1090 katı bir büyüklüğe (bu da 1’den sonra 90 tane sıfır demektir) erişene kadar inanılmaz bir hızla –saniyede 300.000 kilometre olan ışık hızından defalarca kat fazla– genişleyebilirdi!
Devamını oku

Yorum Durumu: Bir yorum --- Kategori: Bilim, Felsefe --- Etiketler: , , , , , ---

Büyük Patlama Teorisinin Geçmişi ve Sorunları

Uzay Evren

“Büyük patlama teorisinden” tek başına bahsetmek aslında doğru değildir. Gerçekte, her biri başı dertten kurtulmayan en azından beş farklı teori vardır. Birincisi, görmüş olduğumuz gibi, 1927’de Lemaître tarafından ileri sürüldü. Bu teori, kısa sürede bir dizi farklı temelde çürütüldü: genel görelilik ve termodinamikten türetilen hatalı sonuçlar, kozmik ışınlar ve yıldızların evrimi hakkında yanlış teoriler vb. İtibarını kaybeden teori, İkinci Dünya Savaşından sonra yeni bir biçim altında George Gamow ve diğerleri tarafından yeniden canlandırıldı. Büyük patlamadan kaynaklanmış olabilecek çeşitli olguları –maddenin yoğunluğu, sıcaklık, radyasyon düzeyleri vb.– açıklamak için Gamow ve diğerleri tarafından birtakım (yeri gelmişken, bir parça bilimsel “yaratıcı muhasebecilikten” yoksun olmayan) hesaplar yapıldı. George Gamow’un parlak yazım tarzı, büyük patlamanın, popüler hayal gücünü ele geçirmesini sağladı. Teori bir kez daha, beklenmedik biçimde ciddi sorunlarla yüz yüze geldi. Sadece Gamow’un modelini değil, onun ardından gelen Robert Dicke ve diğerlerinin “salınan evren” modelini de geçersiz kılan birçok tutarsızlıklar bulunmuştu. Robert Dicke’in “salınan evren” modeli, evreni sonu olmayan bir döngüde salındırarak, büyük patlamadan önce ne olduğu sorununu halletmeye dönük bir girişimdi. Ancak Gamow önemli bir öngörüde bulunmuştu; böyle muazzam bir patlama, geride büyük patlamanın uzaydaki bir çeşit yankısı olarak “fon ışıması” şeklinde bir iz bırakmalıydı. Bu kehanet, birkaç yıl sonra teoriyi yeniden canlandırmak için kullanıldı.
Devamını oku

Yorum Durumu: Yorum yok --- Kategori: Bilim, Felsefe --- Etiketler: , , , , , , , , , , ---

Kaostan Çıkan Düzen

kaos-Son yıllarda, ikinci yasanın bu karamsar yorumuna yeni ve şaşırtıcı bir teoriyle meydan okundu. Nobel ödüllü Belçikalı Ilya Prigogine ve çalışma arkadaşları, termodinamiğin klasik teorilerine tümüyle farklı bir yorumun öncülüğünü yaptılar. Boltzmann’ın teorileriyle Darwin’inkiler arasında bazı paralellikler vardır. Her ikisinde de çok sayıda rasgele dalgalanmalar tersinmez bir değişim noktasına varırlar; birinde biyolojik evrim biçiminde, diğerinde ise enerjinin dağılması ve düzensizliğe dönük bir evrim biçiminde. Termodinamikte zaman, kolayca dönüşüme uğramayan bir duruma indirgenmeyi ve ölümü çağrıştırır. Burada şu soru ortaya çıkar: bu durum, örgütlenmeye ve hatta gittikçe artan bir karmaşıklıkta örgütlenmeye dönük içsel bir eğilim taşıyan yaşam olgusuyla nasıl örtüşmektedir? Yasa, eğer kendi hallerine bırakılırsa, şeylerin artan entropiye dönük bir eğilim taşıdığını söyler.

1960’larda, Ilya Prigogine ve diğerleri, gerçek dünyada atomların ve moleküllerin neredeyse hiçbir zaman “kendi hallerine bırakılmamış” olduklarını fark ettiler. Her şey diğer her şeyi etkiler.

Atomlar ve moleküller neredeyse her zaman dışarıdan madde ve enerji akışının etkisine açıktırlar, ki eğer yeterince güçlüyse, bu akış, termodinamiğin ikinci yasasının varsaydığı görünüşte karşı konulmaz düzensizlik sürecini kısmen tersine çevirebilir. Aslında, doğa yalnızca dağılma ve bozunmanın değil, tam zıt süreçlerin de sayısız örneğini sunar; kendi kendini örgütleme ve büyüme. Odun çürür ama ağaçlar büyür. Prigogine’e göre doğanın her köşesinde kendini örgütleyen yapılar vardır. Benzer şekilde M. Waldrop da şu sonuca çıkar:
Devamını oku

Yorum Durumu: Bir yorum --- Kategori: Bilim, Felsefe --- Etiketler: , , , , , , , ---

Görelilik ve Kara Delikler

karadelikNewton’dan farklı olarak Einstein’a göre, kütleçekim zamanı etkiler, çünkü ışığı etkiler. Eğer bir kara deliğin kenarında hareketsiz tutulan bir ışık parçacığı hayal edilirse, bu parçacık ne ilerler ne de geriler, ne enerji kaybeder ne de kazanır, yalnızca belirsiz bir şekilde askıda kalır. Böyle bir durumda, “zamanın kıpırdamadan durduğunu” ileri sürmek mümkündür. Kara delikleri ve onun niteliklerini savunan görelilikçilerin iddiası budur. Sözün kısası, kastedilen, eğer tüm hareket sona erdirilseydi, ne durum ne de konumda herhangi bir değişimin olmayacağı ve bu nedenle de kelimenin herhangi bir anlamında zaman diye bir şeyin bulunmayacağıdır. Kara deliğin kenarında varolduğu farz edilen durum budur. Ne var ki bu, son derece spekülatif ve mistik bir yorum olarak görünmektedir.

Tüm maddeler sürekli bir değişim ve hareket halindedirler ve bu nedenle burada söylenen şey, eğer madde ve hareket yok edilirse, zamanın da yok olacağından başka bir şey değildir, ki bu tam bir totolojidir. Bu şunu söylemekten farksızdır; eğer madde yoksa madde yoktur, ya da eğer zaman yoksa zaman yoktur. Çünkü her iki ifade de tıpatıp aynı şeyi anlatır. Tuhaftır ama, görelilik teorisinde zamanın ve uzayın ne olduğuna dair bir tanım aramak boşunadır. Einstein şüphesiz bunu izah edilmesi zor bir şey olarak görmüştü. Ne var ki, kendi geometrisi ile klasik Öklid geometrisi arasındaki farkı izah ederken bu noktaya oldukça yaklaşmıştı. İçinde uzayın eğrilmediği bir evren hayal edilebileceğini, ama bunun bütünüyle maddeden yoksun olacağını söylemişti. Bu tastamam doğru bir yöne işaret eder. Kara delikler hakkındaki tüm yaygaralardan sonra, Einstein tarafından bu konuya hiç değinilmediğini keşfettiğinizde şaşırabilirsiniz. O, esasen çok karmaşık bir matematiğe dayalı dikkatli bir yaklaşıma bel bağlamış ve gözlem ve deneyle doğrulanabilecek öngörülerde bulunmuştu. Kara delik fiziği, açıkça saptanmış ampirik verilerin yokluğunda, son derece spekülatif bir karaktere sahiptir.
Devamını oku

Yorum Durumu: 5 yorum --- Kategori: Bilim, Felsefe --- Etiketler: , , , , , , , , , , ---

Görelilik

gorelilikAlbert Einstein hiç şüphesiz zamanımızın en büyük dahilerinden biriydi. Yirmi birinci ve otuz sekizinci doğum günleri arasında, bilimde birçok düzeyde büyük yankılar uyandıran bir devrimi tamamladı. İki büyük buluşu, Özel Görelilik Teorisi (1905) ve Genel Görelilik Teorisi (1915) idi. Özel görelilik yüksek hızlarla ilgilidir, genel görelilik ise kütleçekimle. Einstein’ın teorileri, son derece soyut karakterde olmalarına karşın, nihayetinde deneylerden türetilmişti ve başarılı pratik uygulamalara yol açmıştı, ki bu uygulamalar onun görüşlerinin doğruluğunu defalarca onayladılar. Einstein, 19. yüzyıl fiziğinde içsel bir çelişkiyi açığa vuran ünlü Michelson-Morley deneyinden, “bilim tarihinin en büyük negatif deneyinden” (Bernal) yola çıkmıştı. Bu deneye, ışığın görülen hızının, hareketsiz olduğu varsayılan “eter” içerisinde hareket eden gözlemcinin hızına bağlı olduğunu göstererek elektromanyetik ışık teorisini genelleştirmek üzere girişilmişti. Sonunda, gözlemci hangi doğrultuda hareket ederse etsin, ışığın ölçülen hızlarında hiçbir farklılık bulunamadı. J. J. Thomson daha sonraları, güçlü elektriksel alanlar içinde hareket eden elektronların hızlarının, klasik Newton fiziğinin öngördüğünden daha yavaş olduğunu gösterdi. 19. yüzyıl fiziğindeki bu çelişkiler özel görelilik teorisi tarafından çözüme bağlandı. Eski fizik, radyoaktivite olgusunu açıklamaktan acizdi. Einstein bunu, “eylemsiz” maddenin içine hapsolmuş muazzam miktardaki enerjinin küçük bir kısmının açığa çıkması olarak açıkladı.

Einstein 1905’te İsviçre patent bürosunda bir sekreter olarak çalışırken boş zamanlarında kendi özel görelilik teorisini geliştirdi. Yeni kuantum mekaniğinin keşiflerinden yola çıkarak, ışığın uzayda bir kuantum biçiminde (enerji paketleri olarak) hareket ettiğini gösterdi. Bu yaklaşım, daha önceleri kabul edilmiş ışığın dalga teorisiyle açıkça çelişikti. Aslında Einstein eski ışığın parçacık teorisini bütünüyle farklı bir tarzda yeniden canlandırmıştı. Burada ışık, çelişik bir karaktere sahip, aynı anda hem parçacık hem de bir dalga özelliği gösteren yeni tip bir parçacık olarak görülüyordu. Bu şaşırtıcı teori, spektroskoplar kadar Maxwell denklemlerini de kapsayacak şekilde 19. yüzyıl optiğinin tüm büyük keşiflerinin muhafaza edilmesini mümkün kıldı. Fakat ışığın uzayda hareket edebilmek için, kendine has bir vasıtaya, “eter”e ihtiyaç duyduğu şeklindeki kalıplaşmış eski düşünceyi de yok etti. Özel görelilik, ışığın boşluktaki hızının, ışık kaynağının gözlemciye göre hızı ne olursa olsun, her zaman aynı sabit değerde ölçüleceği kabulünden hareket eder. Dahası, özel görelilik, enerji ve kütlenin aslında eşanlamlı olduklarını ifade eder. Bu, diyalektik materyalizmin temel felsefi postülasının –madde ve enerjinin birbirinden koparılamaz niteliğinin, hareketin (“enerji”) maddenin varoluş tarzı olduğu düşüncesinin– çarpıcı bir doğrulanışıdır.
Devamını oku

Yorum Durumu: 2 yorum --- Kategori: Bilim, Felsefe --- Etiketler: , , , , , , , , ---

19. Yüzyılda Bilim

gaz-mekanikNewton’un klasik mekaniği kendi çağında bilim alanında devasa bir ileri adımı temsil ediyordu.

Newton’un hareket yasaları ilk kez, gözlemlenen olgularla karşılaştırılarak kontrol edilebilecek kesin nicel öngörüleri mümkün kıldı. Ne var ki, tam da bu kesinlik, Laplace ve diğerleri bu öngörüleri bir bütün olarak evrene uygulamaya kalkıştıklarında yepyeni bir soruna yol açtı. Laplace, Newton yasalarının mutlak ve evrensel olarak geçerli olduğuna inanmıştı. Bu iki kez yanlıştır. Her şeyden önce Newton yasaları ancak belli koşullar altında uygulanabilir yaklaşımlar olarak görülmüyordu. İkincisi, Laplace, farklı koşullar altında, fizik biliminde henüz incelenmemiş alanlarda bu yasaların değiştirilmesi ya da genişletilmesi gerekebileceği ihtimalini hiç düşünmedi. Laplace’ın mekanik determinizmi, tüm evrenin herhangi bir andaki konumu ve hızı bir kez bilindiğinde, onun gelecekteki davranışının da her an için belirlenebileceğini varsaydı. Bu teoriye göre, şeylerin tüm zengin çeşitliliği birkaç değişkene dayanan mutlak bir nicel yasalar kümesine indirgenebilirdi.

Newton’un hareket yasalarında ifade edildiği şekliyle klasik mekanik, basit neden ve sonuçla ilgilenir, örneğin bir cismin bir başka cisim üzerine yalıtık etkisi gibi. Ne var ki, pratikte bu imkânsızdır, çünkü hiçbir mekanik sistem bütünüyle yalıtık değildir. Dış etkiler kaçınılmaz olarak “Bu çalışmalarda … şu açığa çıkmıştır ki, tek cisimli sistemler bile esas itibariyle mekanik olmayan bir çehreye sahiptir, şu anlamda ki, sistem ve çevresi bölünmez bir bütün olarak anlaşılmak zorundadır, birbirinden ayrı ve dışsal olarak düşünülen sistem artı çevrenin alışılmış klasik analizi artık uygulanabilir değildir.” Parçaların ilişkisi “nihayetinde, tek başına parçaların özellikleri aracılığıyla ifade edilemeyecek biçimde bütünün durumuna bağlıdır. Gerçekte, parçalar bütünden kaynaklanan bir tarzda örgütlenmiştir.”
Devamını oku

Yorum Durumu: Yorum yok --- Kategori: Bilim, Felsefe --- Etiketler: , , , , , , , ---