Planck Yasası

Neden ısı deyince aklımıza kırmızı renk gelir? Neden ısıtılan çelik önce kırmızı, sonra sarı ve en son beyaz ışık yayar? Max Planck bu renk değişimlerini ısının ve ışığın fiziklerini ilişkilendirerek kağıda dökmüştür. Işığı, sürekliliği olan bir dalga olarak değil de istatiksel olarak tanımlayan Planck’ın devrimsel fikri, kuantum fiziğinin de tohumlarını atmıştır.

Bir çok maddenin ısıtıldığında parladığını ve ışık yaydığını biliriz. Nesneler artan sıcaklıkla birlikte önce kırmızı, sonra sarı ve en son beyaz ışık yayar. Işık beyaz görünür çünkü var olan sarı ve sarıya daha çok mavi eklenmiştir. Renklerin bu dağılımı, kara cisim eğrisiyle gösterilir. Yıldızlar da bu sırayı izler: Ne kadar sıcak olurlarsa renkleri de o kadar maviye kayar. Yüzey sıcaklığı 6000 kelvin olan Güneş sarı bir yıldızdır. Sirius gibi bazı yıldızlar 30000 kelvine varan sıcaklıklarıyla mavi – beyaz görünür.

On dokuzuncu yüzyılda fizikçiler hangi maddeden yapılmış olursa olsun, nesnelerin ısıtıldığında yaydıkları ışığın hep aynı örüntüde olması karşısında şaşkındılar. Işığın büyük bir bölümü tek bir frekanstan yayılıyordu. Sıcaklık arttırılınca tepe frekans daha mavi (daha kısa) dalgaboylarına kayıyor, önce kırmızıdan sarıya, sonra mavi-beyaza doğru ilerliyordu. Karacisim ışıması terimini kullanmamızın sebebi ısıyı en iyi emen ve yayanların koyu renk madde olması. Fizikçiler kara cisim grafikleri elde ediyor ama bunları anlamlandıramıyorlardı. Frekansın neden tek bir renkte tepe yaptığını da açıklayamıyorlardı. Biliminsanları bazı kısmi çözümler elde ettiler. Ama bu çözümlerden bazıları, morötesi dalga boylarını ve ötesinde sonsuz miktarda enerjinin yayılması gerektiğini öngörüyordu. Bu soruna morötesi faciası adı verildi.

Kara cisim ışımınasını anlamaya çalışan Max Planck, ısı ve ışık fiziklerini birlikte ele alıyordu. Planck gönülsüzce de olsa denklemlerinin tutması için kurnazca bir düzeltme yaptı. Elektromanyetik ışımanın, termodinamik uzmanlarının ısıyı ele aldığı gibi ele alınması gerektiğini seziyordu. Sıcaklığın pek çok parçacık arasındaki ısı enerjisi paylaşımı olmasından yola çıkan Planck, elektromanyetik enerjiyi de bir elektromanyetik osilatör kümesi veya atomaltı elektromanyetik alan birimleri arasında bölüştürdü ve ışığı bunun üzerinden tanımladı.

Denklerim tutmasını sağlamak için her elektromanyetik birimin enerjisini frekansla orantılandırarak E=hv denklemini elde etti. Burada E enerji, v ışığın frekansı, h ise Planck sabiti denen sabit bir sayıdır.  Elektromanyetik enerjiyi bir çok osilatör arasında bölüştürmenin en olası yolunu bulan Planck’ın modeli enerjinin büyük bölümünü ortadaki frekanslara dağıtıyordu. Bu, tepeli kara cisim tayfına da uyuyordu. Planck 1901 de ışık dalgalarıyla olasılık arasında bağ kuran bu yasayı yayımladı ve büyük beğeni topladı. Kısa bir süre içinde bu yeni düşünce sayesinde “morötesi faciası” sorununun da çözüldüğü görüldü.

Planck’ın kuantaları, kendi yasasının matematiğinin tutarlı olmasını sağlamak için geliştirdiği fikirlerden ibaretti; o osilatörlerin gerçek olabileceğini bir an olsun aklına getirmemişti. Ama tam da atom fiziğinin hızla geliştiği bir dönemde Planck’ın bu yeni formülasyonunun çok şaşırtıcı çıkarımları olacaktı. Planck bir tohum atmıştı; bu tohum büyüyecek ve modern fiziğin en önemli alanlarından biri haline gelecekti: Kuantum Kuramı.

Yorum Durumu: Bir yorum --- Kategori: Bilim --- Etiketler:, , , , , , , , , , ---

Mutlak Sıfır

Mutlak sıfır; bir maddenin, atomlarının hareketinin duracağı kadar soğuk olduğu hayali bir noktadır. Mutlak sıfıra ne doğada ne de labarotuvarda ulaşılabilmiştir. Ama biliminsanları ona çok yakın sıcaklıklara inebilmiştir. Mutlak sıfıra ulaşmak imkansız olabilir. Ulaşılsa bile bunu bilemeyebiliriz, çünkü onu ölçecek bir termometre yoktur.

Bir şeyin sıcaklığını ölçerken aslında ölçtüğümüz şey, onu oluşturan parçacıkların ortalama enerjisidir. Sıcaklık parçacıkların ne kadar hızlı titreştiğini ya da dolaştığını gösterir.

Dünya’da ölçülmüş en düşük sıcaklık 1983’te Antarktika’nın ortasındaki Vostok’ta ölçülen -89 derece Celsius, yani 184 Kelvindir. (0 Celsius, 273 Kelvindir)

Uzaya çıkılırsa orası daha da soğuktur. Şu ana değin Evren’de saptanan en soğuk bölge, Bumerang nebulasında mutlak sıfırın yalnızca bir derece üstünde olan karanlık bir gaz bulutudur.

Laboratuvar ortamında Evrenden bile daha düşük sıcaklıklara geçici olarak ulaşılmıştır. 1994’te Colorado eyaletinde biliminsanları, lazer kullanarak sezyum atomlarını mutlak sıfırın yalnızca bir kelvinin bir milyarda 700’ü üstüne kadar soğutmayı başlardılar. Dokuz yıl sonra Massachussets Teknoloji Enstitüsü’ndeki biliminsanları daha da ileri gittiler ve mutlak sıfıra bir kelvinin milyarda 0,5’i kadar yaklaştılar.

Ne kadar çalışırlarsa çalışsınlar, biliminsanları gerçekte mutlak sıfıra kesinlikle ulaşamayacaklarını bilirler. Mutlak sıfır için belki de “orada öyle bir yer yok” demek en doğrusudur.

Yorum Durumu: Yorum yok --- Kategori: Bilim --- Etiketler:, , , , , ---

Plazma Evren Modeli

plazma-evrenStandart evren modelinin kendisi gediklerle doludur. Ama yine de, en başta bir alternatifinin olmaması nedeniyle, kötü bir şekilde sallanmasına rağmen hâlâ ayaklarının üzerinde durmaktadır. Bununla birlikte, bilim dünyasında bir şeyler kıpırdanıyor. Büyük patlama teorisini reddetmekle kalmayıp, sonsuz ve sürekli değişen bir evren fikrinden yola çıkan yeni fikirler şekillenmeye başlıyor. Bu teorilerden hangisinin haklı çıkacağını söylemek için henüz çok erken. İlginç hipotezlerden biri olan “Plazma Evren” hipotezi, Nobel Ödülünü kazanan İsveçli fizikçi Hannes Alfvén tarafından ileri sürülmüştü. Teoriyi ayrıntılarıyla ele alamasak da, en azından Alfvén’in fikirlerinden bazılarından söz etmek gerektiği kanısındayız.

Alfvén laboratuvardaki plazma araştırmalarından kalkarak evrenin nasıl evrimleştiğini incelemeye başladı. Plazma elektriksel olarak iletken sıcak gazlardan oluşur. Bugün evrenin %99’unun plazma olduğu biliniyor. Normal gazlarda, elektronlar bir atoma bağlıyken ve kolayca hareket edemezken, bir plazmadaki elektronlar çok büyük sıcaklıklar nedeniyle atomdan koparlar, böylelikle de serbestçe hareket etmeleri olanaklı olur. Plazma kozmologları, “muazzam elektrik akımları ve güçlü manyetik alanlar tarafından kesilen ve elektromanyetizma ile kütleçekimin kozmik kontrpuanıyla düzenlenen” bir evren tasavvur ederler. 1970’lerde, Pioneer ve Voyager uzay araçları, Jüpiter, Satürn ve Uranüs etrafında plazma filamanlarıyla dolu elektrik akımlarının ve manyetik alanların varlığını saptadılar.
Devamını oku

Yorum Durumu: 2 yorum --- Kategori: Bilim, Felsefe --- Etiketler:, , , , , , , ---

Görelilik

gorelilikAlbert Einstein hiç şüphesiz zamanımızın en büyük dahilerinden biriydi. Yirmi birinci ve otuz sekizinci doğum günleri arasında, bilimde birçok düzeyde büyük yankılar uyandıran bir devrimi tamamladı. İki büyük buluşu, Özel Görelilik Teorisi (1905) ve Genel Görelilik Teorisi (1915) idi. Özel görelilik yüksek hızlarla ilgilidir, genel görelilik ise kütleçekimle. Einstein’ın teorileri, son derece soyut karakterde olmalarına karşın, nihayetinde deneylerden türetilmişti ve başarılı pratik uygulamalara yol açmıştı, ki bu uygulamalar onun görüşlerinin doğruluğunu defalarca onayladılar. Einstein, 19. yüzyıl fiziğinde içsel bir çelişkiyi açığa vuran ünlü Michelson-Morley deneyinden, “bilim tarihinin en büyük negatif deneyinden” (Bernal) yola çıkmıştı. Bu deneye, ışığın görülen hızının, hareketsiz olduğu varsayılan “eter” içerisinde hareket eden gözlemcinin hızına bağlı olduğunu göstererek elektromanyetik ışık teorisini genelleştirmek üzere girişilmişti. Sonunda, gözlemci hangi doğrultuda hareket ederse etsin, ışığın ölçülen hızlarında hiçbir farklılık bulunamadı. J. J. Thomson daha sonraları, güçlü elektriksel alanlar içinde hareket eden elektronların hızlarının, klasik Newton fiziğinin öngördüğünden daha yavaş olduğunu gösterdi. 19. yüzyıl fiziğindeki bu çelişkiler özel görelilik teorisi tarafından çözüme bağlandı. Eski fizik, radyoaktivite olgusunu açıklamaktan acizdi. Einstein bunu, “eylemsiz” maddenin içine hapsolmuş muazzam miktardaki enerjinin küçük bir kısmının açığa çıkması olarak açıkladı.

Einstein 1905’te İsviçre patent bürosunda bir sekreter olarak çalışırken boş zamanlarında kendi özel görelilik teorisini geliştirdi. Yeni kuantum mekaniğinin keşiflerinden yola çıkarak, ışığın uzayda bir kuantum biçiminde (enerji paketleri olarak) hareket ettiğini gösterdi. Bu yaklaşım, daha önceleri kabul edilmiş ışığın dalga teorisiyle açıkça çelişikti. Aslında Einstein eski ışığın parçacık teorisini bütünüyle farklı bir tarzda yeniden canlandırmıştı. Burada ışık, çelişik bir karaktere sahip, aynı anda hem parçacık hem de bir dalga özelliği gösteren yeni tip bir parçacık olarak görülüyordu. Bu şaşırtıcı teori, spektroskoplar kadar Maxwell denklemlerini de kapsayacak şekilde 19. yüzyıl optiğinin tüm büyük keşiflerinin muhafaza edilmesini mümkün kıldı. Fakat ışığın uzayda hareket edebilmek için, kendine has bir vasıtaya, “eter”e ihtiyaç duyduğu şeklindeki kalıplaşmış eski düşünceyi de yok etti. Özel görelilik, ışığın boşluktaki hızının, ışık kaynağının gözlemciye göre hızı ne olursa olsun, her zaman aynı sabit değerde ölçüleceği kabulünden hareket eder. Dahası, özel görelilik, enerji ve kütlenin aslında eşanlamlı olduklarını ifade eder. Bu, diyalektik materyalizmin temel felsefi postülasının –madde ve enerjinin birbirinden koparılamaz niteliğinin, hareketin (“enerji”) maddenin varoluş tarzı olduğu düşüncesinin– çarpıcı bir doğrulanışıdır.
Devamını oku

Yorum Durumu: 2 yorum --- Kategori: Bilim, Felsefe --- Etiketler:, , , , , , , , ---

Maddenin Yok Oluşu mu?

atom-bombasiGöreliliğin keşfedilmesinden uzun zaman önce, bilim iki temel ilke keşfetmişti; enerjinin korunumu ve kütle korunumu. Bunların ilki 17. yüzyılda Leibniz tarafından ayrıntılı olarak incelenmiş ve ardından 19. yüzyılda bir mekanik ilkesinin doğal sonucu olarak geliştirilmişti. Çok daha önceleri, ilk insanlar, sürtme yardımıyla ateş yaktıklarında ve böylelikle de verili bir enerji miktarını (iş) ısıya dönüştürdüklerinde, işin ve ısının eşdeğerliliği ilkesini pratik olarak keşfetmişlerdi. Bu yüzyılın başlarında, kütlenin enerji biçimlerinden sadece biri olduğu keşfedilmişti. Bir madde parçacığı oldukça yüksek düzeyde yoğunlaşmış ve lokalize olmuş enerjiden başka bir şey değildir. Bir parçacıkta yoğunlaşan enerji miktarı onun kütlesiyle orantılıdır ve toplam enerji miktarı her zaman sabit kalır. Bir çeşit enerjinin kaybı, bir başka çeşit enerjinin kazanılmasıyla telâfi edilir. Enerji sürekli olarak biçimini değiştirirken yine de her zaman aynı kalır.

Einstein, bizzat kütlenin şaşılacak miktarda bir enerji barındırdığını kanıtlamakla bir devrim gerçekleştirmişti. Kütle ve enerjinin eşdeğerliği E = mc2 formülüyle ifade edilir, burada m kütle, c ışık hızı (yaklaşık olarak saniyede 300.000 km) ve E de durgun cismin barındırdığı enerjidir. m kütlesinde içerilen enerji, ışığın muazzam hızının karesiyle bu kütlenin çarpımına eşittir. Kütle bu nedenle enerjinin oldukça yoğunlaşmış bir biçimidir, bu enerjinin gücü hakkında şu gerçek bizlere bir fikir verebilir; bir atom bombasının patlamasıyla açığa çıkan enerji, enerjiye dönüşen kütlenin binde birinden daha azdır. Normalde, madde içinde hapsolmuş bu muazzam enerji kendini dışa vurmaz ve bu nedenle de göze çarpmaz. Ama atom çekirdeğinin içindeki süreçler belli bir kritik noktaya ulaşırsa, bu enerjinin bir kısmı, kinetik enerji olarak dışarı salınır.
Devamını oku

Yorum Durumu: 2 yorum --- Kategori: Bilim, Felsefe --- Etiketler:, , , , , , , , , ---

Nükleer Fisyon

fisyonGörünüşte basit olan ve birçok eşdeğerlerinin de gündelik deneyim içinde yüzlerce kez gözlenebileceği bu örnek, nükleer fisyonda işleyen süreçlere oldukça yakın bir benzerlik sunar. Çekirdeğin kendisi hareketsiz olmayıp, sürekli bir değişim içindedir. Saniyenin katrilyonda biri kadar süre içinde parçacıklar milyarlarca kez rasgele çarpışmalar yaparlar. Parçacıklar sürekli olarak çekirdeğe girmekte ve onu terk etmektedirler. Ancak çekirdek, çoğunlukla güçlü kuvvet olarak tanımlanan kuvvetle bir arada tutulmakta ve kararsız bir denge durumunda kalmaktadır, ya da kaos teorisinin belirttiği gibi “kaosun eşiğinde” bulunmaktadır.

Titreşen bir sıvı damlasında olduğu gibi, içindeki moleküller hareket ettikçe parçacıklar da sürekli olarak hareket eder, kendilerini dönüştürür, enerji alış verişinde bulunurlar. Büyümüş bir yağmur damlası gibi, büyük bir çekirdeğin içindeki parçacıklar arasındaki bağ da kararsızlaşır ve parçalanma olasılığı artar. Çekirdek yüzeyinden düzenli olarak alfa parçacıklarının serbest bırakılması, çekirdeği daha küçük ve kararlı yapar. Ama nötronlarla bombardımana tutulan büyük bir çekirdeğin, atom içerisinde hapsolmuş muazzam miktarlardaki enerjinin bir kısmını açığa çıkararak parçalanabileceği keşfedilmiştir. Bu süreç, parçacıkların dışarıdan müdahalesi olmadan da gerçekleşebilmektedir. Kendi kendine gerçekleşen fisyon süreci (radyoaktif bozunma) doğada her daim ola gelmektedir. Bir libre uranyumda, bir saniye içinde dört tane kendiliğinden fisyon gerçekleşir ve sekiz milyon çekirdekten de alfa parçacıkları yayılır. Çekirdek ne kadar ağır olursa fisyon olması olasılığı da o kadar artar.
Devamını oku

Yorum Durumu: Yorum yok --- Kategori: Bilim --- Etiketler:, , , , , ---

Pozitif ve Negatif

sifir-sonsuzNegatif olmadan pozitif anlamsızdır. Bunlar zorunlu olarak birbirlerinden ayrılamazlar. Hegel çok uzun zaman önce “saf varlığın” (çelişkiden arınmış) saf hiçlikle aynı şey olduğunu, yani boş bir soyutlama olduğunu açıklamıştı. Aynı şekilde, eğer her şey beyaz olsaydı, bu bizim için sanki her şeyin siyah olmasıyla aynı olurdu. Gerçek dünyada her şey pozitifi ve negatifi, olmayı ve olmamayı içerir, çünkü her şey sürekli bir hareket ve değişim halindedir. Bu arada matematik sıfırın hiçliğe eşit olmadığını göstermektedir.

Sıfır, herhangi bir belirli niceliğin yadsınması olduğu için içerikten yoksun değildir. Tersine sıfırın çok kesin bir içeriği vardır. Tüm pozitif ve negatif büyüklüklerin sınır çizgisi olarak, ne pozitif ne de negatif olabilen tek gerçek nötr sayı olarak o, yalnızca kesin bir sayı değil, aynı zamanda kendi başına bizzat sınırladığı tüm diğer sayılardan daha önemlidir. Aslında sıfır, içerik olarak diğer tüm sayılardan daha zengindir. Herhangi bir sayının sağına koyun, onu on katına çıkarır. Kendi başına alındığında sıfır = 0 anlamına gelmesi şartıyla, sıfır yerine başka herhangi bir işaret kullanılabilirdi. Demek ki, bu uygulamasının olması ve kendi başına bu şekilde uygulanabilmesi sıfırın doğasından gelen bir şeydir. Sıfır kendisiyle çarpılan her sayıyı yok eder; bölme işleminde herhangi bir sayıyla bölen terim olarak bir araya geldiğinde o sayıyı sonsuz ölçüde büyütür, bölünen terim olarak bir araya geldiğinde sonsuz ölçüde küçültür; diğer her sayıyla sonsuzluk ilişkisi içinde duran tek sayıdır. 0/0, –∞ ile +∞ arasında her sayıyı ifade edebilir ve her durumda gerçek bir büyüklüğü temsil eder.
Devamını oku

Yorum Durumu: Yorum yok --- Kategori: Bilim, Felsefe --- Etiketler:, , , , , , ---